lim \(\dfrac{5x^2+2x+3}{x^2+1}\)
x-> +∞
Tìm các giới hạn sau
1. lim ( x đến 1) \(\dfrac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}\)
2. lim ( x đến 1-) \(\dfrac{2x-3}{1-x}\)
3. lim ( x đến 2+) \(\dfrac{x-3}{2-x}\)
4. lim ( x đến +-∞) \(\dfrac{-8x^3+9x^2+x-1}{5x^2+1}\)
5. lim ( x đến -∞) \(\dfrac{\sqrt{x^2}-x-1+3x}{2x+7}\)
1/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7-9\right)\left(2+\sqrt{x+3}\right)}{\left(4-x-3\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(2+\sqrt{x+3}\right)}{\left(x-1\right)\left(-\sqrt{2x+7}-3\right)}=\dfrac{2.4}{-6}=-\dfrac{4}{3}\)
2/ \(=\lim\limits_{x\rightarrow1^-}\dfrac{2.1-3}{1-1}=-\infty\)
3/ \(=\lim\limits_{x\rightarrow2^+}\dfrac{3-x}{x-2}=+\infty\)
4/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-\dfrac{8x^3}{x^2}+\dfrac{9x^2}{x^2}+\dfrac{x}{x^2}-\dfrac{1}{x^2}}{\dfrac{5x^2}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-8x}{5}=\pm\infty\)
5/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}}+\dfrac{2x}{x}-\dfrac{1}{x}}{\dfrac{2x}{x}+\dfrac{7}{x}}=\dfrac{1}{2}\)
tính giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{5x^2+x^3+5}{4x^3+1}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-x+1}{x^3+x-2x^2}\)
c) \(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-x+1}{x^3+x-2x^2}\)
`a)lim_{x->+oo}[5x^2+x^3+5]/[4x^3+1]` `ĐK: 4x^3+1 ne 0`
`=lim_{x->+oo}[5/x+1+5/[x^3]]/[4+1/[x^3]]`
`=1/4`
`b)lim_{x->-oo}[2x^2-x+1]/[x^3+x-2x^2]` `ĐK: x ne 0;x ne 1`
`=lim_{x->-oo}[2/x-1/[x^2]+1/[x^3]]/[1+1/[x^2]-2/x]`
`=0`
Câu `c` giống `b`.
\(\lim\limits_{x\rightarrow0}\dfrac{\left(1+3x\right)^3-\left(1-4x\right)^4}{x}\)
\(\lim\limits_{x\rightarrow2}\dfrac{2x^2-5x+2}{x^3-3x-2}\)
\(\lim\limits_{x\rightarrow1}\dfrac{x^4-3x+2}{x^3+2x-3}\)
1/ \(=\lim\limits_{x\rightarrow0}\dfrac{3\left(1+3x\right)^2.3+4.4\left(1-4x\right)^3}{1}=...\left(thay-x-vo\right)\)
2/ \(=\lim\limits_{x\rightarrow2}\dfrac{2.2.x-5}{3x^2-3}=\dfrac{4.2-5}{3.4-3}=\dfrac{1}{3}\)
3/ \(=\lim\limits_{x\rightarrow1}\dfrac{4x^3-3}{3x^2+2}=\dfrac{4.1-3}{3.1-2}=1\)
Xai L'Hospital nhe :v
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-\sqrt[3]{2x+1}}{x}\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{4x+5}-3}{\sqrt[3]{5x+3}-2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt[4]{2x+3}+\sqrt[3]{2+3x}}{\sqrt{x+2}-1}\)
\(a=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4x+1}-1+1-\sqrt[3]{2x+1}}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt[]{4x+1}+1}+\dfrac{-2x}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\dfrac{4}{\sqrt[]{4x+1}+1}+\dfrac{-2}{1+\sqrt[3]{2x+1}+\sqrt[3]{\left(2x+1\right)^2}}\right)=...\)
\(b=\lim\limits_{x\rightarrow1}\dfrac{4\left(x-1\right)\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(x-1\right)\left(\sqrt[]{4x+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{4\left(\sqrt[3]{\left(5x+3\right)^2}+2\sqrt[3]{5x+3}+4\right)}{5\left(\sqrt[]{4x+5}+3\right)}=...\)
\(c=\lim\limits_{x\rightarrow-1}\dfrac{\left(2x+3\right)^{\dfrac{1}{4}}+\left(2+3x\right)^{\dfrac{1}{3}}}{\left(x+2\right)^{\dfrac{1}{2}}-1}\)
\(=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{1}{2}\left(2x+3\right)^{-\dfrac{3}{4}}+\left(2+3x\right)^{-\dfrac{2}{3}}}{\dfrac{1}{2}\left(x+2\right)^{-\dfrac{1}{2}}}=3\)
a) lim \(\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+2}}\)
x-> +∞
b) lim \(\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
x-> ∞
b/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)
a/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{2}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)
b/ x tien toi duong vo cung hay am vo cung ban?
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-\sqrt{3x^2+2}}{5x+\sqrt{x^2+1}}\)
\(\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{x^2+1}{2x^4+x^2-3}}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{1+x^4+x^6}}{\sqrt{1+x^3+x^4}}\)
1/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x}{x}-\sqrt{\dfrac{3x^2}{x^2}+\dfrac{2}{x^2}}}{\dfrac{5x}{x}+\sqrt{\dfrac{x^2}{x^2}+\dfrac{1}{x^2}}}=\dfrac{2-\sqrt{3}}{5+1}=\dfrac{2-\sqrt{3}}{6}\)
2/ \(=\lim\limits_{x\rightarrow+\infty}\sqrt{\dfrac{\dfrac{x^2}{x^4}+\dfrac{1}{x^4}}{\dfrac{2x^4}{x^4}+\dfrac{x^2}{x^4}-\dfrac{3}{x^4}}}=0\)
3/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt[3]{\dfrac{x^6}{x^6}+\dfrac{x^4}{x^6}+\dfrac{1}{x^6}}}{\sqrt{\dfrac{x^4}{x^4}+\dfrac{x^3}{x^4}+\dfrac{1}{x^4}}}=-1\)
Tìm giới hạn
1) \(\xrightarrow[x->3]{lim}\dfrac{x^2-5x+6}{\sqrt{2x+3}-\sqrt{4x-3}}\)
2) \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{x^2+2}-\sqrt{4x-1}}{x-1}\)
3) \(\xrightarrow[x->-1]{lim}\dfrac{x-2}{x\left|x+1\right|}\)
4) \(\xrightarrow[x->a]{lim}\dfrac{x^n-a^n}{x-a}\)
5) \(\xrightarrow[x->1]{lim}(\dfrac{n}{1-x^n}-\dfrac{1}{1-x})\)
6) \(\xrightarrow[x->1]{lim}\dfrac{x^n-nx+n-1}{\left(x-1\right)^2}\)
tìm giới hạn
a.\(\lim\limits_{x\rightarrow-1}\left(\dfrac{2x^2-x-3}{x^3+1}\right)\)
b.\(\lim\limits_{x\rightarrow3}\left(\dfrac{2x^3-5x^2-2x-3}{\sqrt[3]{x+5}-2}\right)\)
Dạng 0/0 một là phân tích đa thức thành nhân tử để rút gọn mẫu khỏi dạng 0/0. Hoặc là nhân liên hợp
a/ \(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-\dfrac{3}{2}\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x}{x^2}-\dfrac{3}{2x^2}}{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}}=0\)
b/ \(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(2x^2+x+1\right)\left[\left(\sqrt[3]{x+5}\right)^2+2\sqrt[3]{x+5}+4\right]}{x-3}\)
\(=\left(2.3^2+3+1\right)\left[\left(\sqrt[3]{3+5}\right)^2+2\sqrt[3]{3+5}+4\right]=...\)
bn nên đăng ở môn cần nha!
tính giới hạn
a) \(\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{x^2-5x+6}\)
b) \(\lim\limits_{x\rightarrow5}\dfrac{x^2-5x}{x-5}\)
c) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-3x}{2x^2+9x+9}\)
a: \(\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{x^2-5x+6}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{x-2}=\dfrac{3+3}{3-2}=\dfrac{6}{1}=6\)
b: \(\lim\limits_{x\rightarrow5}\dfrac{x^2-5x}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{x\left(x-5\right)}{x-5}=\lim\limits_{x\rightarrow5}x=5\)
c: \(\lim\limits_{x\rightarrow-3}\dfrac{x^2-3x}{2x^2+9x+9}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{x\left(x-3\right)}{2x^2+6x+3x+9}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{\left(-3\right)\left(-3-3\right)}{\left(-3+3\right)\left(2\cdot\left(-3\right)+3\right)}\)
\(=\lim\limits_{x\rightarrow-3}\dfrac{18}{0\cdot\left(-3\right)}=-\infty\)