Dạng 0/0 một là phân tích đa thức thành nhân tử để rút gọn mẫu khỏi dạng 0/0. Hoặc là nhân liên hợp
a/ \(=\lim\limits_{x\rightarrow-1}\dfrac{\left(x+1\right)\left(x-\dfrac{3}{2}\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\dfrac{\dfrac{x}{x^2}-\dfrac{3}{2x^2}}{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}}=0\)
b/ \(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(2x^2+x+1\right)\left[\left(\sqrt[3]{x+5}\right)^2+2\sqrt[3]{x+5}+4\right]}{x-3}\)
\(=\left(2.3^2+3+1\right)\left[\left(\sqrt[3]{3+5}\right)^2+2\sqrt[3]{3+5}+4\right]=...\)
bn nên đăng ở môn cần nha!