Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
....
Xem chi tiết
anbe
30 tháng 7 2021 lúc 12:19

câu a 

Gọi xlà nghiệm chung của PT(1) và (2)

\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\)  Lấy (1)-(2) ,ta được 

PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0

     \(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)

      \(\Leftrightarrow m=\dfrac{12}{11}\)

 

 

Niki Rika
Xem chi tiết
Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:12

cái này bạn lm cái điều kiện vs giải pt đối chiếu điều kiện Cho mik nhé

 

Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:12

cái này mik phân tích đề Cho bạn hiểu 

 

Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:25

Để phương trình 1 cso 2 nghiệm 

=> \(\Delta\ge0\)

<=>\(m\le6\)

=> Theo hệ thức Viét ta có:

\(\left\{{}\begin{matrix}S=x1+x2=6\\P=x1x2=2m-3\end{matrix}\right.\left(\circledast\right)\)

Vì x1 và x2 là nghiệm của pt 1 

=> \(\left\{{}\begin{matrix}x1^2-6x1+2m-3=0\\x2^2-6x2+2m-3=0\end{matrix}\right.\)

<=> ​​\(\left\{{}\begin{matrix}x1^2-5x1+2m-4=x1-1\\x2^2-5x2+2m-4=x2-1\end{matrix}\right.\left(\otimes\right)\)

Theo bài ra ta có :

(x12−5x1+2m−4)(x22−5x2+2m−4)=2 \(\left(\otimes\otimes\right)\)

Thay \(\left(\otimes\right)vào\left(\otimes\otimes\right)\) ta được:

\(\left(x1-1\right)\left(x2-1\right)=2\)

<=> x1x2 - \(\left(x1+x2\right)\) =1 *

Thay \(\left(\circledast\right)\) vào * ta được :

2m - 3 - 6 =1

<=>2m = 10

<=> m=5  <t/m>

Vậy....

 
Rimuru Tempest
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 14:49

- Với \(m=\dfrac{1}{2}\) ko thỏa mãn

- Với \(m\ne\dfrac{1}{2}\)

\(\Leftrightarrow\left(2m-1\right)x^3-\left(2m-1\right)x^2-\left(m-2\right)x^2+\left(m-4\right)x+2\ge0\)

\(\Leftrightarrow\left(2m-1\right)x^2\left(x-1\right)-\left(x-1\right)\left[\left(m-2\right)x+2\right]\ge0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2m-1\right)x^2-\left(m-2\right)x-2\right]\ge0\) (1)

Do (1) luôn chứa 1 nghiệm \(x=1\in\left(0;+\infty\right)\) nên để bài toán thỏa mãn thì cần 2 điều sau đồng thời xảy ra:

+/ \(2m-1>0\Rightarrow m>\dfrac{1}{2}\)

+/ \(\left(2m-1\right)x^2-\left(m-2\right)x-2=0\) có 2 nghiệm trong đó \(x_1\le0\) và \(x_2=1\)

Thay \(x=1\) vào ta được:

\(\left(2m-1\right)-\left(m-2\right)-2=0\Leftrightarrow m=1\)

Khi đó: \(x^2+x-2=0\) có 2 nghiệm \(\left[{}\begin{matrix}x_1=-2< 0\left(thỏa\right)\\x_2=1\end{matrix}\right.\)

Vậy \(m=1\)

Trương Thanh Nhân
Xem chi tiết
....
Xem chi tiết
Trúc Giang
30 tháng 7 2021 lúc 11:21

undefined

undefined

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 13:37

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Huyền Trang
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 12 2020 lúc 7:05

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

Lý Khánh Hưng
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 3 2022 lúc 21:11

PT có nghiệm $x_1=2$

\(\Leftrightarrow4-6\left(m-1\right)+2m-4=0\\ \Leftrightarrow6-4m=0\Leftrightarrow m=\dfrac{3}{2}\)

Theo Vi-ét: \(x_1+x_2=3\left(m-1\right)=\dfrac{3}{2}\)

\(\Leftrightarrow2+x_2=\dfrac{3}{2}\Leftrightarrow x_2=-\dfrac{1}{2}\)

Vậy nghiệm còn lại là $-\frac{1}{2}$

Điền Nguyễn Thanh
Xem chi tiết