Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Niki Rika

Cho phương trình \(x^2-6x+2m-3=0\). Tìm \(m\) để phương trình có 2 nghiệm \(x_1\)\(x_2\) thỏa mãn \(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\).

Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:12

cái này bạn lm cái điều kiện vs giải pt đối chiếu điều kiện Cho mik nhé

 

Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:12

cái này mik phân tích đề Cho bạn hiểu 

 

Nguyễn Bá Mạnh
17 tháng 6 2022 lúc 22:25

Để phương trình 1 cso 2 nghiệm 

=> \(\Delta\ge0\)

<=>\(m\le6\)

=> Theo hệ thức Viét ta có:

\(\left\{{}\begin{matrix}S=x1+x2=6\\P=x1x2=2m-3\end{matrix}\right.\left(\circledast\right)\)

Vì x1 và x2 là nghiệm của pt 1 

=> \(\left\{{}\begin{matrix}x1^2-6x1+2m-3=0\\x2^2-6x2+2m-3=0\end{matrix}\right.\)

<=> ​​\(\left\{{}\begin{matrix}x1^2-5x1+2m-4=x1-1\\x2^2-5x2+2m-4=x2-1\end{matrix}\right.\left(\otimes\right)\)

Theo bài ra ta có :

(x12−5x1+2m−4)(x22−5x2+2m−4)=2 \(\left(\otimes\otimes\right)\)

Thay \(\left(\otimes\right)vào\left(\otimes\otimes\right)\) ta được:

\(\left(x1-1\right)\left(x2-1\right)=2\)

<=> x1x2 - \(\left(x1+x2\right)\) =1 *

Thay \(\left(\circledast\right)\) vào * ta được :

2m - 3 - 6 =1

<=>2m = 10

<=> m=5  <t/m>

Vậy....

 

Các câu hỏi tương tự
Niki Rika
Xem chi tiết
Tô Mì
Xem chi tiết
Anh Quynh
Xem chi tiết
Zenitisu
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
camcon
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
Anh Quynh
Xem chi tiết