Cho PT ẩn x: m.(mx-2)+2.(mx+1)-3x=0. Tìm m để PT có nghiệm dương duy nhất
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Cho pt: mx- 2+ m= 3x
a)tìm m để pt đã cho nhận x=\(\frac{1}{2}\) làm nghiệm
b) tìm m để pt đã cho có nghiệm duy nhất và tìm nghiệm duy nhất đó theo m
a) dễ rồi bạn chỉ việc bế x = 1/2 vào tìm m bình thường
b) mx - 2 + m = 3x
<=> ( m - 3 )x + m - 2 = 0
Để pt có nghiệm duy nhất thì m - 3 ≠ 0 <=> m ≠ 3
Khi đó nghiệm duy nhất là x = -m+2/m-3
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
b1 : cho hệ pt (m-1)x - my = 3m-1
2x-y =m+5
a) giải hệ pt khi m = 2
b) tìm m để hệ pt có nghiệm duy nhất sao cho \(x^2 -y^2=4 \)
b2 : cho hệ pt mx + y = 1
x + my = m + 1
với gtrị nào của m thì hệ pt có nghiệm duy nhất
với gtrị nào của m thì hệ pt có vô số nghiệm
với gtrị nào của m thì hệ pt vô nghiệm
Thay m=2 vào HPT ta có:
\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
Vậy HPT có nghiemj (x;y) = (3;-11)
a, cho pt X2-2x+4/x-2=ms+2-2m tìm m để pt có 2 nghiệm pb
b,cho pt mx2+x+m/x-1=0 tìm m để pt có 2 nghiệm dương pb
cho pt x^2+mx+m-1=0 (1). Tìm m để pt(1) có 1 nghiệm phân biệt x1,x2 thỏa mãn x1+3x^2=5
Đề là \(x_1+3x_2=5\) phải không nhỉ?
cách làm nào sai
cho pt x^2-mx+m-1=0 tìm m để pt có 2 nghiệm phân biệt
c1: có a+b+c =1-m+m-1=0 nên pt luôn có 2 nghiệm phân biệt vói mọi m
c2: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0 <=> m>2 kl...
c3: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0( luôn đúng với mọi m) kl...
giải thích vì sao
m khác 2 nha bn
Học tốt