\(m^2x-2m+2mx+2-3x=0\)
\(\Leftrightarrow\left(m^2+2m-3\right)x=2\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)\left(m+3\right)x=2\left(m-1\right)\)
- Với \(m=1\) pt có vô số nghiệm (ktm)
- Với \(m\ne1\Rightarrow x=\dfrac{2}{m+3}>0\Rightarrow m>-3\)
Vậy để pt có nghiệm dương duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\ne1\end{matrix}\right.\)