Giúp mình giải hpt này với:
\(\left\{{}\begin{matrix}0,75x-10y=7,5\\-0,5x+xy=5\end{matrix}\right.\)
giúp tui mấy bài này đi mọi người
giải hệ Phương trình
1. \(\left\{{}\begin{matrix}1,3x+4,2y=12\\0,5x+2,5y=5,5\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}0,35x+4y=-2,6\\0,75x-6y=9\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x-y=5\\-x+y=-2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}19x-21y=15\\16x-21y=6\end{matrix}\right.\)
8.\(\left\{{}\begin{matrix}4x-3y=4\\-6x+7y=4\end{matrix}\right.\)
9.\(\left\{{}\begin{matrix}-7x+4y=-1\\5x-4y=-5\end{matrix}\right.\)
11.\(\left\{{}\begin{matrix}8x+5y=20\\1,6x+2y=0\end{matrix}\right.\)
12. \(\left\{{}\begin{matrix}4x+3y=5\\2x-5y=9\end{matrix}\right.\)
14. \(\left\{{}\begin{matrix}-3x+8y=72\\7x+9y=-2\end{matrix}\right.\)
15. \(\left\{{}\begin{matrix}\dfrac{x}{2}+2y=\dfrac{7}{2}\\2x-y=\dfrac{19}{2}\end{matrix}\right.\)
Lời giải:
Tất cả những bài này đều có hướng giải y chang nhau, nên mình hướng dẫn mẫu 1 bài, các bài khác bạn triển khai tương tự
4. \(\left\{\begin{matrix} 2x-y=5\\ -x+y=-2\end{matrix}\right.\)
Từ PT(1) ta có: $y=2x-5$ (biểu diễn $y$ theo $x$). Thay vào PT(2):
$-x+(2x-5)=-2$
$\Leftrightarrow x-5=-2$
$\Leftrightarrow x=3$
Khi đó: $y=2x-5=2.3-5=1$
Vậy $(x,y)=(3,1)$
Giải hpt:
\(\left\{{}\begin{matrix}xy-\frac{x}{y}=9,6\\xy-\frac{y}{x}=7,5\end{matrix}\right.\)
Tham khảo nha:
Lấy pt (1) từ đi pt (2) vế theo vế ta được:
\(\frac{y}{x}-\frac{x}{y}=2,1\)
\(\Leftrightarrow y^2-x^2=2,1xy\)
\(\Leftrightarrow x^2+2,1xy-y^2=0\)
\(\Leftrightarrow\frac{1}{10}\left(5x-2y\right)\left(2x+5y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2y}{5}\\x=-\frac{5y}{2}\end{matrix}\right.\)
Thay vào pt đầu là được
giải hpt: \(\left\{{}\begin{matrix}x+y+xy=5\\x^3+y^3=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=5\\\left(x+y\right)^3-3xy\left(x+y\right)=9\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}u+v=5\\u^3-3uv=9\end{matrix}\right.\)
\(\Rightarrow u^3-3u\left(5-u\right)=9\)
\(\Leftrightarrow u^3+3u^2-15u-9=0\)
\(\Leftrightarrow\left(u-3\right)\left(u^2+6u+3\right)=0\)
\(\Leftrightarrow...\)
giải hpt: a,\(\left\{{}\begin{matrix}x+y-\sqrt{xy}=3\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y=5+\sqrt{\left(x-1\right)\left(y-1\right)}\\\sqrt{x-1}+\sqrt{y-1}=3\end{matrix}\right.\)
a.
ĐKXĐ: \(x;y\ge-1;xy\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\ge0\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u-3=\sqrt{v}\\u+2\sqrt{u+v+1}=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=u^2-6u+9\left(u\ge3\right)\\4\left(u+v+1\right)=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\4u+4\left(u^2-6u+9\right)+4=\left(14-u\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\3u^2+8u-156=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=\left(u-3\right)^2\\\left[{}\begin{matrix}u=6\\u=-\dfrac{26}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=6\\v=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=9\end{matrix}\right.\) \(\Rightarrow x=y=3\)
b.
ĐKXĐ: \(x;y\ge1\)
Xét \(\sqrt{x-1}+\sqrt{y-1}=3\)
\(\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=9\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=\dfrac{11-x-y}{2}\)
Thế vào pt đầu:
\(x+y=5+\dfrac{11-x-y}{2}\)
\(\Leftrightarrow x+y=7\Rightarrow y=7-x\)
Thế xuống pt dưới:
\(\sqrt{x-1}+\sqrt{6-x}=3\)
\(\Leftrightarrow5+2\sqrt{\left(x-1\right)\left(6-x\right)}=9\)
\(\Leftrightarrow\left(x-1\right)\left(6-x\right)=4\)
\(\Leftrightarrow...\)
Giải các hệ Pt sau:
a,\(\left\{{}\begin{matrix}-0,5x+1,2y=2,7\\x-4,5y=-7,5\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}5x+3y=19\\2x+9y=31\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{3}{4}x+\frac{2}{5}y=2,3\\x-\frac{3}{5}y=0,8\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}5\left(x+2y\right)-3\left(x-y\right)=99\\x-3y=7x-4y-17\end{matrix}\right.\)
mọi người ơi, giúp em giải hpt này với ạ.
\(\left\{{}\begin{matrix}2x-y=1-2y\\3x+y=3-x\end{matrix}\right.\)
giải hpt:
\(\left\{{}\begin{matrix}\left|xy-10\right|=20-x^2\\xy=5+y^2\end{matrix}\right.\)
Điều kiện: \(20-x^2\ge0\Leftrightarrow-2\sqrt{5}\le x\le2\sqrt{5}\)
Với \(xy-10< 0\)thì ta có
\(\left\{\begin{matrix}xy-10=x^2-20\left(1\right)\\xy=5+y^2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ta được
\(x^2+y^2-2xy=5\)
\(\Leftrightarrow\left(x-y\right)^2=5\)
\(\Leftrightarrow\left[\begin{matrix}x-y=-\sqrt{5}\\x-y=\sqrt{5}\end{matrix}\right.\)
Tới đây thì đơn giản rồi nhé. B làm phần còn lại nhé
Trường hợp còn lại thì tương tự
Giải hpt: \(\left\{{}\begin{matrix}2y\left(x^2-y^2\right)=3x\\x\left(x^2+y^2\right)=10y\end{matrix}\right.\) với x;y cùng dấu
Lời giải:
Nếu \(x=0\Rightarrow y=0\)
Nếu \(x\neq 0\). Đặt \(y=tx(t>0\) do $x,y$ cùng dấu)
Nhân chéo PT(1) với PT(2) ta thu được:
\(20y^2(x^2-y^2)=3x^2(x^2+y^2)\)
\(\Leftrightarrow 20t^2x^2(x^2-t^2x^2)=3x^2(x^2+t^2x^2)\)
\(\Leftrightarrow x^4[20t^2(1-t^2)-3(1+t^2)]=0\)
\(\Leftrightarrow 20t^2-20t^4-3-3t^2=0\) (do \(x\neq 0\) )
\(\Leftrightarrow 20t^4-17t^2+3=0\)
\(\Rightarrow \left[\begin{matrix} t=\sqrt{\frac{3}{5}}\\ t=\frac{1}{2}\end{matrix}\right.\)
Nếu \(t=\sqrt{\frac{3}{5}}\Rightarrow y=\sqrt{\frac{3}{5}}x\). Thay vào PT(1):
\(2\sqrt{\frac{3}{5}}x(x^2-\frac{3}{5}x^2)=3x\)
\(\Rightarrow x=\pm \frac{\sqrt{5\sqrt{15}}}{2}\Rightarrow y=\pm \sqrt{\frac{3}{5}}.\frac{\sqrt{5\sqrt{15}}}{2}\) (tương ứng)
Nếu \(t=\frac{1}{2}\Rightarrow y=\frac{x}{2}\). Thay vào PT(1):
\(2.\frac{1}{2}x(x^2-\frac{1}{4}x^2)=3x\)
\(\Rightarrow x=\pm 2\Rightarrow y=\pm 1\) (tương ứng)
Vậy........
giải hpt \(\left\{{}\begin{matrix}\dfrac{1-xy}{x\left(1+y^2\right)}=\dfrac{2}{5}\\\dfrac{1-xy}{y\left(1+x^2\right)}=\dfrac{1}{2}\end{matrix}\right.\)