Điều kiện: \(20-x^2\ge0\Leftrightarrow-2\sqrt{5}\le x\le2\sqrt{5}\)
Với \(xy-10< 0\)thì ta có
\(\left\{\begin{matrix}xy-10=x^2-20\left(1\right)\\xy=5+y^2\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ta được
\(x^2+y^2-2xy=5\)
\(\Leftrightarrow\left(x-y\right)^2=5\)
\(\Leftrightarrow\left[\begin{matrix}x-y=-\sqrt{5}\\x-y=\sqrt{5}\end{matrix}\right.\)
Tới đây thì đơn giản rồi nhé. B làm phần còn lại nhé
Trường hợp còn lại thì tương tự