Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Anh

Giải hpt:

\(\left\{\begin{matrix}\left(x+y\right)^4+13=6x^2y^2-10\\xy\left(x^2+y^2\right)=-1\end{matrix}\right.\)

Akai Haruma
31 tháng 1 2017 lúc 22:39

Lời giải:

Đặt \(x^2+y^2=a,xy=b\) $(1)$

\(\text{HPT}\Leftrightarrow \left\{\begin{matrix} (a+2b)^2=6b^2+3\\ ab=-1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+4ab=2b^2+3\\ ab=-1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2=2b^2+7\\ ab=-1\end{matrix}\right.\). Thay \(b=\frac{-1}{a}\)

\(\Rightarrow a^2=\frac{2}{a^2}+7\Rightarrow a=\sqrt{\frac{7+\sqrt{57}}{2}}\) (do $a\geq 0$) \(\Rightarrow b=\frac{7-\sqrt{57}}{4}\sqrt{\frac{7+\sqrt{57}}{2}}\)

Thay vào $(1)$ suy ra HPT có nghiệm là:

\((x,y)\approx (0,228;-1,626),(-0,228;1,626),(-1,626;0,228),(1,626;-0,228)\)

P/s: Vẫn giải được nhưng số quá xấu. Có lẽ do bạn viết nhầm đề. Nhưng trên cơ bản cách giải vẫn như vậy.

Hải Anh
31 tháng 1 2017 lúc 20:55
Phạm Minh Quang
7 tháng 11 2019 lúc 14:42

@Võ Hồng Phúc coi cách giải của thằng @Akai Haruma nhưng phương trình dưới là -10 chứ không phải là -1 giải tau xem thử

răng số vẫn xấu

Khách vãng lai đã xóa
Phạm Minh Quang
7 tháng 11 2019 lúc 14:42
Khách vãng lai đã xóa

Các câu hỏi tương tự
Như
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
lê thị tiều thư
Xem chi tiết