Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
crewmate
Xem chi tiết
Trần Văn Hoàng
Xem chi tiết
ひまわり(In my personal...
15 tháng 2 2021 lúc 14:59

1, Với \(x\ge0,x\ne1\) ta có :

\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

   \(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

   \(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

   \(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2, Ta có \(P=\dfrac{7}{4}\)

          \(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

         \(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

         \(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)

          \(\Leftrightarrow\sqrt{x}=3\)

          \(\Leftrightarrow x=9\left(tm\right)\)

Nguyễn Lê Phước Thịnh
15 tháng 2 2021 lúc 19:53

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)

\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: Để \(P=\dfrac{7}{4}\) thì x=9

Qasalt
Xem chi tiết
Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 13:35

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 13:39

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 13:48

a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)

KYAN Gaming
Xem chi tiết
Trúc Giang
1 tháng 8 2021 lúc 20:15

undefined

Nguyễn Lê Phước Thịnh
1 tháng 8 2021 lúc 20:24

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Để \(P=\dfrac{7}{2}\) thì \(2x+2\sqrt{x}+2-7\sqrt{x}=0\)

\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

Nguyễn Hà Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 21:27

a: |x|+2003>=2003

=>A<=2022/2003

Dấu = xảy ra khi x=0

b: |x|+1>=1

=>(|x|+1)^10>=1

=>B>=2010

Dấu = xảy ra khi x=0

Lê Phương Linh
Xem chi tiết

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

loancute
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2021 lúc 16:06

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{20a-11}{2012}\\x_1x_2=-1\end{matrix}\right.\)

\(P=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(\dfrac{x_1-x_2}{2}-\dfrac{x_1-x_2}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}-\dfrac{1}{x_1x_2}\right)^2\)

\(=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(x_1-x_2\right)^2\left(\dfrac{1}{2}+1\right)^2\)

\(=6\left(x_1-x_2\right)^2=6\left(x_1+x_2\right)^2-24x_1x_2\)

\(=6\left(\dfrac{20a-11}{2012}\right)^2+24\ge24\)

Dấu "=" xảy ra khi \(a=\dfrac{11}{20}\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 12:30

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)