cho \(x,y,z\ge0\) thỏa mãn \(x+y+z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2+y^2+z^2\)
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
cho x,y ,z dương thỏa mãn x +y +z = 6. tìm GTLN và GTNN của A = \(x^2+y^2+z^2\)
Bài này chỉ có min, không có max của A nhé bạn
Muốn có max thì x;y;z phải không âm
Chox y z là các số thực dương thỏa mãn x+y+z=6 tìm GTLN và GTNN của biểu thức \(x^2+y^2+z^2\)
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{6^2}{3}=12\)
Dấu "=" xảy ra <=> x = y = z = 2
GTNN của x^2 + y^2 + z^2 là 12 tại x = y = z = 2
Cho \(x,y,z\ge0\) thỏa mãn x+y+z=3
Tìm GTNN và GTLN của \(S=x^2+y^2+z^2+\frac{9}{2}xyz\)
Em ko chắc lắm đâu, tại yếu dạng điểm rơi tại biên này lắm.
*Tìm min
Ta có: \(S\ge x^2+y^2+z^2+\frac{3}{2}xyz\) (cái này dễ chứng minh) (Đẳng thức xảy ra khi có một số = 0 (hoặc 2 số "=" 0) )
Ta chứng minh: \(x^2+y^2+z^2+\frac{3}{2}xyz\ge\frac{9}{2}=\frac{\left(x+y+z\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2+z^2+3xyz\ge2xy+2yz+2zx\)
Do \(\left[x\left(y-1\right)\left(z-1\right)\right]\left[y\left(z-1\right)\left(x-1\right)\right]\left[z\left(x-1\right)\left(y-1\right)\right]\)
\(=xyz\left(x-1\right)^2\left(y-1\right)^2\left(z-1\right)^2\ge0\) nên tồn tại ít nhất 1 thừa số không âm. Ở đây em sẽ chứng minh trường hợp \(x\left(y-1\right)\left(z-1\right)\ge0\). Các trường hợp còn lại chứng minh tương tự.
Do \(x\left(y-1\right)\left(z-1\right)\ge0\Rightarrow3xyz\ge3xy+3xz-3x\)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+zx-3x-2yz\ge0\)
\(\Leftrightarrow x\left(x+y+z\right)+\left(y-z\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\) và các hoán vị.
*Tìm Max:
Chưa nghĩ ra.
Chết,bài tìm min nhầm chút:(dòng 10)
Như vậy ta cần chứng minh: \(x^2+y^2+z^2+xy+yz-3x-2yz\ge0\)
Ta có;\(VT=x\left(x+y+z-3\right)+\left(y-z\right)^2=\left(y-z\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;\frac{3}{2};\frac{3}{2}\right)\)
Như vầy nha!
*Tìm Max:
Dễ chứng minh:\(S\le x^2+y^2+z^2+6xyz\)
Như vậy ta chứng minh: \(x^2+y^2+z^2+6xyz\le9=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(xy+yz+zx-3xyz\right)\ge0\)
BĐT này đúng vì \(xy+yz+zx-3xyz\ge3\left[\left(\sqrt[3]{xyz}\right)^2-\left(\sqrt[3]{xyz}\right)^3\right]\)
\(=3\left(\sqrt[3]{xyz}\right)^2\left[1-\sqrt[3]{xyz}\right]\ge3\left(\sqrt[3]{xyz}\right)^2\left(1-\frac{x+y+z}{3}\right)=0\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và các hoán vị.
Cho các số thực \(x\ge1\); \(y\ge1\); \(z\ge1\) thỏa mãn x+y+z=4
Tìm GTLN,GTNN của biểu thức \(P=x^2+y^2+z^2\)
\(P=x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^3=\dfrac{64}{3}\)
\(P_{min}=\dfrac{64}{3}\) khi \(x=y=z=\dfrac{4}{3}\)
Đặt \(\left(x;y;z\right)=\left(a+1;b+1;c+1\right)\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\a;b;c\ge0\end{matrix}\right.\)
\(\Rightarrow0\le a;b;c\le1\) \(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\) \(\Rightarrow a^2+b^2+c^2\le a+b+c=1\)
\(P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2\)
\(P=a^2+b^2+c^2+2\left(a+b+c\right)+3=a^2+b^2+c^2+5\le1+5=6\)
\(P_{max}=6\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị hay \(\left(x;y;z\right)=\left(1;1;2\right)\) và hoán vị
cho x,y,z là số dương thỏa mãn x+y+z = 6 . tìm GTNN và GTLN của A = \(x^2+y^2+z^2\)
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
Cho x, y, z là những số thực thỏa mãn x+y+z=0 và -1≤x,y,z≤1. Tìm GTNN và GTLN của biểu thức P=x4+y6+z8
Cho `x,y,z>`0 thỏa mãn `x+y+z>=3/2` tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z`
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+\frac{1}{2x}+\frac{1}{2x}\geq 3\sqrt[3]{\frac{1}{4}}$
Tương tự:
$y^2+\frac{1}{2y}+\frac{1}{2y}\geq 3\sqrt[3]{\frac{1}{4}}$
$z^2+\frac{1}{2z}+\frac{1}{2z}\geq 3\sqrt[3]{\frac{1}{4}}$
Cộng theo vế:
$A\geq 9\sqrt[3]{\frac{1}{4}}$ (đây chính là $A_{\min}$)
Dấu "=" xảy ra khi $x=y=z=\sqrt[3]{\frac{1}{2}}$