Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kimian Hajan Ruventaren
Xem chi tiết
Lê Thùy Linh
2 tháng 5 2021 lúc 20:59

undefined

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2021 lúc 16:43

a/\(sina-1=2sin\dfrac{a}{2}.cos\dfrac{a}{2}-sin^2\dfrac{a}{2}-cos^2\dfrac{a}{2}=-\left(sin\dfrac{a}{2}-cos\dfrac{a}{2}\right)^2\)

b/\(P=\dfrac{cosa+cos5a+2cos3a}{sina+sin5a+2sin3a}=\dfrac{2cos3a.cos2a+2cos3a}{2sin3a.cos2a+2sin3a}=\dfrac{2cos3a\left(cos2a+1\right)}{2sin3a\left(cos2a+1\right)}=cot3a\)

c/\(P=sin\left(30+60\right)=sin90=1\)

d/

\(A=cos\dfrac{2\pi}{7}+cos\dfrac{6\pi}{7}+cos\dfrac{4\pi}{7}\Rightarrow A.sin\dfrac{\pi}{7}=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)

\(=\dfrac{1}{2}sin\dfrac{3\pi}{7}-\dfrac{1}{2}sin\dfrac{\pi}{7}+\dfrac{1}{2}sin\dfrac{5\pi}{7}-\dfrac{1}{2}sin\dfrac{3\pi}{7}+\dfrac{1}{2}sin\dfrac{7\pi}{7}-\dfrac{1}{2}sin\dfrac{5\pi}{7}\)

\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\Rightarrow A=-\dfrac{1}{2}\)

e/

\(tan\dfrac{\pi}{24}+tan\dfrac{7\pi}{24}=\dfrac{sin\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}}+\dfrac{sin\dfrac{7\pi}{24}}{cos\dfrac{7\pi}{24}}=\dfrac{sin\dfrac{\pi}{24}cos\dfrac{7\pi}{24}+sin\dfrac{7\pi}{24}cos\dfrac{\pi}{24}}{cos\dfrac{\pi}{24}.cos\dfrac{7\pi}{24}}\)

\(=\dfrac{sin\left(\dfrac{\pi}{24}+\dfrac{7\pi}{24}\right)}{\dfrac{1}{2}cos\dfrac{\pi}{4}+\dfrac{1}{2}cos\dfrac{\pi}{3}}=\dfrac{2sin\dfrac{\pi}{3}}{cos\dfrac{\pi}{4}+cos\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}+1}\)

Ngô Thành Chung
21 tháng 4 2021 lúc 18:22

sina - 1 = sina - sin\(\dfrac{\pi}{2}\)

 

Jelly303
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:04

\(VT=\dfrac{-tan\left(\dfrac{\pi}{2}-a\right)cos\left(2\pi-\dfrac{\pi}{2}+a\right)-sin^3\left(4\pi-\dfrac{\pi}{2}-a\right)}{cos\left(\dfrac{\pi}{2}-a\right)tan\left(2\pi-\dfrac{\pi}{2}+a\right)}\)

\(=\dfrac{-cota.sina+sin^3\left(\dfrac{\pi}{2}+a\right)}{sina.\left(-cota\right)}=\dfrac{-cosa+cos^3a}{-cosa}=1-cos^2a=sin^2a\)

Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
10 tháng 5 2017 lúc 17:07

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).

Bùi Thị Vân
10 tháng 5 2017 lúc 17:12

b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).

Bùi Thị Vân
10 tháng 5 2017 lúc 17:19

c) Do \(0< \alpha< \dfrac{\pi}{2}\) nên các giá trị lượng giác của \(\alpha\) đều dương.
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\Rightarrow cos^2\alpha=\dfrac{1}{tan^2\alpha+1}\)
Vì vậy: \(cos\alpha=\sqrt{\dfrac{1}{tan^2+1}}=\dfrac{\sqrt{58}}{3}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{3}{7}\).
\(sin\alpha=cos\alpha:cot\alpha=\dfrac{\sqrt{58}}{3}:\dfrac{3}{7}=\dfrac{7\sqrt{58}}{9}\).

Hà Minh Châu
Xem chi tiết
Hồng Phúc
15 tháng 4 2021 lúc 17:09

\(\left\{{}\begin{matrix}tan\alpha=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{sin\alpha}{cos\alpha}=-\dfrac{7}{3}\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\sin^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\\dfrac{49}{9}cos^2\alpha+cos^2\alpha=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos^2\alpha=\dfrac{9}{58}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{3}cos\alpha\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\) (Vì \(\dfrac{3\pi}{2}< \alpha< 2\pi\Rightarrow cos\alpha>0\))

\(\Leftrightarrow\left\{{}\begin{matrix}sin\alpha=-\dfrac{7}{\sqrt{58}}\\cos\alpha=\dfrac{3}{\sqrt{58}}\end{matrix}\right.\)

\(cot\alpha=\dfrac{1}{tan\alpha}=-\dfrac{3}{7}\)

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 16:34

\(A.sin\dfrac{\pi}{7}=sin\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)\)

\(=\dfrac{1}{8}sin\left(\pi+\dfrac{\pi}{7}\right)=\dfrac{1}{8}sin\left(-\dfrac{\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=-\dfrac{1}{8}\)

Uyên Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 22:23

a:

2: pi/2<a<pi

=>sin a>0 và cosa<0

tan a=-2

1+tan^2a=1/cos^2a=1+4=5

=>cos^2a=1/5

=>\(cosa=-\dfrac{1}{\sqrt{5}}\)

\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)

cot a=1/tan a=-1/2

3: pi<a<3/2pi

=>cosa<0; sin a<0

1+cot^2a=1/sin^2a

=>1/sin^2a=1+9=10

=>sin^2a=1/10

=>\(sina=-\dfrac{1}{\sqrt{10}}\)

\(cosa=-\dfrac{3}{\sqrt{10}}\)

tan a=1:cota=1/3

b;

tan x=-2

=>sin x=-2*cosx

\(A=\dfrac{2\cdot sinx+cosx}{cosx-3sinx}\)

\(=\dfrac{-4cosx+cosx}{cosx+6cosx}=\dfrac{-3}{7}\)

2: tan x=-2 

=>sin x=-2*cosx

\(B=\dfrac{-4cosx+3cosx}{-6cosx-2cosx}=\dfrac{1}{8}\)

Uyên Nhi
Xem chi tiết
Thanh Hoàng Thanh
11 tháng 4 2022 lúc 8:49

undefined

Ngô Thành Chung
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 5 2021 lúc 10:27

A\(=\dfrac{cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}}{cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{7}.cos\dfrac{5\pi}{7}}\)

Đặt tử là Y; mẫu là U

Có \(Y=\)\(cos\dfrac{5\pi}{7}.cos\dfrac{3\pi}{7}+\left(cos\dfrac{5\pi}{7}.cos\dfrac{\pi}{7}+cos\dfrac{3\pi}{7}.cos\dfrac{\pi}{7}\right)\)

\(=cos\left(\pi-\dfrac{2\pi}{7}\right).cos\left(\pi-\dfrac{4\pi}{7}\right)+cos\dfrac{\pi}{7}\left(cos\dfrac{5\pi}{7}+cos\dfrac{3\pi}{7}\right)\)

\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{\pi}{7}.2cos\dfrac{4\pi}{7}.cos\dfrac{\pi}{7}\)\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+2.cos^2\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}\)

\(=cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+\left(cos\dfrac{2\pi}{7}+1\right).cos\dfrac{4\pi}{7}\)\(=2.cos\dfrac{2\pi}{7}.cos\dfrac{4\pi}{7}+cos\dfrac{4\pi}{7}\)

\(=cos\dfrac{6\pi}{7}+cos\dfrac{2\pi}{7}+cos\dfrac{4\pi}{7}\)

\(\Rightarrow sin\dfrac{\pi}{7}.Y=sin\dfrac{\pi}{7}.cos\dfrac{2\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{4\pi}{7}+sin\dfrac{\pi}{7}.cos\dfrac{6\pi}{7}\)

\(=\dfrac{1}{2}\left(-sin\dfrac{\pi}{7}+sin\dfrac{3\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{3\pi}{7}+sin\dfrac{5\pi}{7}\right)+\dfrac{1}{2}\left(-sin\dfrac{5\pi}{7}+sin\pi\right)\)

\(=\dfrac{1}{2}\left(sin\pi-sin\dfrac{\pi}{7}\right)\)\(=-\dfrac{1}{2}sin\dfrac{\pi}{7}\)

\(\Rightarrow Y=-\dfrac{1}{2}\)

Có \(sin\dfrac{\pi}{7}.U=sin\dfrac{\pi}{7}.cos\dfrac{\pi}{7}.cos\dfrac{3\pi}{5}.cos\dfrac{5\pi}{7}\)

\(=\dfrac{1}{2}.sin\dfrac{2\pi}{7}.cos\left(\pi-\dfrac{2\pi}{7}\right).cos\dfrac{3\pi}{5}\)

\(=-\dfrac{1}{4}.sin\dfrac{4\pi}{7}.cos\left(\pi-\dfrac{4\pi}{5}\right)\)

\(=\dfrac{1}{8}.sin\dfrac{8\pi}{7}\)\(=\dfrac{1}{8}.sin\left(\pi+\dfrac{\pi}{7}\right)=-\dfrac{1}{8}.sin\dfrac{\pi}{7}\)

\(\Rightarrow U=-\dfrac{1}{8}\) 

Vậy \(A=\dfrac{Y}{U}=4\)

Etermintrude💫
27 tháng 5 2021 lúc 10:10

undefined

CHÚC BẠN HỌC TỐT NHÉok

Lâm Ánh Yên
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 8 2021 lúc 17:28

\(A=cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\left(-cos\left(\pi-\dfrac{5\pi}{7}\right)\right)=-cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(\Rightarrow A.sin\left(\dfrac{\pi}{7}\right)=-sin\left(\dfrac{\pi}{7}\right).cos\left(\dfrac{\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{2}sin\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{2\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)=-\dfrac{1}{4}sin\left(\dfrac{4\pi}{7}\right)cos\left(\dfrac{4\pi}{7}\right)\)

\(=-\dfrac{1}{8}sin\left(\dfrac{8\pi}{7}\right)=\dfrac{1}{8}sin\left(\dfrac{\pi}{7}\right)\)

\(\Rightarrow A=\dfrac{1}{8}\)

\(B=\dfrac{\sqrt{3}}{2}.cos48^0.cos24^0.cos12^0\)

\(\Rightarrow B.sin12^0=\dfrac{\sqrt{3}}{2}sin12^0.cos12^0cos24^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{4}sin24^0cos24^0cos48^0=\dfrac{\sqrt{3}}{8}sin48^0.cos48^0\)

\(=\dfrac{\sqrt{3}}{16}sin96^0=\dfrac{\sqrt{3}}{16}cos6^0\)

\(\Rightarrow2B.sin6^0.cos6^0=\dfrac{\sqrt{3}}{16}cos6^0\Rightarrow B=\dfrac{\sqrt{3}}{32.sin6^0}\)

Biểu thức này ko thể rút gọn tiếp được