Cho x - y =2 Tìm GTNN của
a) A=x-y+4
b) B= x2 + y2 - xy
cho x, y, z ≥ 0 thỏa mãn x + y + z =6. Tìm GTNN và GTLN của
A = x2 + y2 + z2
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
Cho (x+y-1)2 = xy tìm GTNN của P=1/xy + 1/x2+y2 + √xy/x+y
Cho x y là số thực thỏa mãn x - y - xy=3 Tìm GTNN của A= x2 +y2
cho x,y>0 và x+y=1. Tìm GTNN của 1/xy +2/(x2+y2)
áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)
=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)
dấu bằng xảy ra khi x=y=1/2
Cho x>y>2
a.chứng minh x+y>4, xy>4
b. x2 -xy>0, y2 -2y>0, xy-y2>0
a: x>2
y>2
=>x+y>2+2=4
x>y>2
=>xy>2^2=4
b: x^2-xy=x(x-y)
x-y>0; x>0
=>x(x-y)>0
=>x^2-xy>0
y>2
=>y-2>0
=>y(y-2)>0
=>y^2-2y>0
x>y và y>2
=>y>0 và x-y>0
=>y(x-y)>0
=>xy-y^2>0
cho x + y + xy = 8. Tìm GTNN của P = x2 + y2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
Cho x + y + z = 3
a, Tìm GTNN của A = x2 + y2 + z2
b, Tìm GTNN của B = xy + yz + zx
c, Tìm GTNN của C = A + B
a, ap dung bunhiacopxki
(1+1+1)A\(\ge\)(x+y+z)2=9
A\(\ge\)3
Dau bang xay ra khi x=y=z=1
b, co Bmax ko co Bmin
Cho các số thực x;y thỏa mãn: xy+x+y=15
Tìm GTNN của A=x2+y2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
cái này x,y phải là số thực dương chứ nhỉ
\(xy+x+y=15< =>x\left(y+1\right)+\left(y+1\right)=16\)
\(< =>\left(x+1\right)\left(y+1\right)=16\)
đặt \(\left\{{}\begin{matrix}x+1=a\\y+1=b\end{matrix}\right.\)\(=>a.b=16\)
Ta có:
\(a^2-2ab+b^2\ge0\)
=> \(a^2+b^2+2ab-4ab\ge0\)\(=>\left(a+b\right)^2\ge4ab\)\(< =>\left(x+y+2\right)^2\ge4.16=64\)
\(=>x+y+2\ge\sqrt{64}=>x+y\ge\sqrt{64}-2=6\)
\(=>\left(x+y\right)^2=6^2=36\)
lại có \(\left(x-y\right)^2\ge0=>\left(x+y\right)^2+\left(x-y\right)^2\ge36\)
\(< =>x^2+2xy+y^2+x^2-2xy+y^2\ge36\)
\(< =>2\left(x^2+y^2\right)\ge36=>x^2+y^2\ge18\)
dấu"=" xảy ra<=>x=y=3=>Min A=18
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
1.
a.(-xy)(-2x2y+3xy-7x)
b.(1/6x2y2)(-0,3x2y-0,4xy+1)
c.(x+y)(x2+2xy+y2)
d.(x-y)(x2-2xy+y2)
2.
a.(x-y)(x2+xy+y2)
b.(x+y)(x2-xy+y2)
c.(4x-1)(6y+1)-3x(8y+4/3)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru