Cho đường tròn C : x 2 + y 2 + 4 x - 6 y + 5 = 0 . Đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung ngắn nhất có phương trình là
A. x+y-1=0.
B. x-y-1=0.
C. x-y+1=0.
D. 2x-y+2=0.
cho điểm A (-4,-2) đường tròn (C) (x-3)^2+(y+4)^2=12 đường thẳng d x+y-6=0. M là điểm di động trên (C). Tìm GTLN,GTNN của đoạn MA
Cho đường tròn ( C )÷(x-3)^2+ ( y+ 6 )^2= 36. Tìm ảnh của ( C ) qua phép vị tự tâm 0(0;0 ) , tỉ số 4 - tỉ số k = 1/3 A (x+9)^2 + (y-18)^2=4 B (x-1)^2+(y+2)^2=4 C (x+1)^2+(y-2)^2=36 D (x+9)^2+(y-18)^2=36
Câu 18: Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = 2 biến đường tròn (C) có phương trình: x2 + y2 + 4x + 6y = 12 thành đường tròn (C’) có phương trình:
A. (x - 4)2 + (y - 6)2 = 100
B. (x + 2)2 + (y + 3)2 = 100
C. (x + 4)2 + (y + 6)2 = 100
D. (x - 2)2 + (y - 3)2 = 100
Hãy cho biết phương trình nào dưới đây là phương trình đường tròn. Tìm tâm và bán kính của đường tròn đó.
a) \({x^2} - {y^2} - 2x + 4y - 1 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 6 = 0\)
c) \({x^2} + {y^2} + 6x - 4y + 2 = 0\)
a) Đây không phải là dạng của phương trình đường tròn (hệ số \({y^2}\) bằng -1).
b) Vì \({a^2} + {b^2} - c = {1^2} + {\left( { - 2} \right)^2} - 6 < 0\) nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {2^2} - 1 = 11 > 0\) nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;2} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {11} \).
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình: (x+1)^2+(y-2)^2=4. Ảnh của đường tròn (C) quá phép vị tự tâm O tỉ số -3 có bán kính là: A.4 B.12 C.-12 D.6
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Cho đường tròn C: (x-1)^2+(y+2)^2=2. Tìm ảnh của C qua phép tịnh tiến véc tơ v(2;2)?
A.(x+1)^2+(y+4)^2=2
B.(x+1)^2+(y-4)^2=2
C.(x-1)^2+(y+4)^2=2
D.(x-3)^2+y^2=2
1. Phương trình tiếp tuyến d của đường tròn (C): \(x^2+y^2-3x-y=0\) tại điểm N(1;-1) là:
A. \(d:x+3y-2=0\) B. \(d:x-3y+4=0\)
C. \(d:x-3y-4=0\) D. \(d:x+3y+2=0\)
2. Cho đường tròn (C): \(x^2+y^2-4x+4y-4=0\) và điểm M(1;0). Dây cung của (C) đi qua điểm M có độ dài ngắn nhất bằng:
A. \(2\sqrt{3}\) B. \(\sqrt{5}\) C. 12 D. \(2\sqrt{7}\)
3. Lập phương trình chính tắc của parabol (P) biết (P) đi qua điểm M có hoành độ \(x_M=2\) và khoảng từ M đến tiêu điểm là \(\dfrac{5}{2}\)
A. \(y^2=8x\) B. \(y^2=4x\) C. \(y^2=x\) D. \(y^2=2x\)
đường tròn (C) có đường kính AB với A(6;-3), B(1;2) có phương trình là:
A. \((x-\dfrac{7}{2})^2\)+\((y+\dfrac{1}{2})^2\)=\(\dfrac{50}{4}\) B.\((x-7)^2\)+\((y+1)^2\)=50
C. \((x-\dfrac{7}{2})^2\)+\((y+\dfrac{1}{2})^2\)=25 D. \((x-7)^2\)+\((y+1)^2=25\)
Trong mặt phẳng Oxy cho đường tròn C : x 2 + y − 1 2 = 3 . Hỏi trong bốn đường tròn C 1 : x + 1 2 + y − 3 2 = 4 , C 2 : x − 1 2 + y 2 = 2 , C 3 : x − 1 2 + y + 3 2 = 3 , C 4 : x 2 + y + 1 2 = 9 đường tròn nào là ảnh của (C) qua phép tịnh tiến.
A. C 1
B. C 2
C. C 3
D. C 4
Đáp án C.
Phép tinh tiến không làm thay đổi bán kính đường tròn nên đường tròn (C3) là ảnh của (C) qua phép tịnh tiến.