Phương trình x 2 + 2 ( m + 1 ) x + 9 m - 5 = 0 có hai nghiệm âm phân biệt
A . m ∈ 5 9 ; 1 ∪ 6 ; + ∞
B . m ∈ - 2 ; 6
C . m ∈ 6 ; + ∞
D . m ∈ - 2 ; 1
1)giải phương trình x^2+x+3
2) giải và biện luận phương trình
a)(1-m)x=m^2-1
b)(m^2-5m+6)x=x^2-9
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Bài 3.1 Cho phương trình : \(x^2\) - 2(m-1)x + \(m^2\) - 9 =0
a)Tìm m để phương trình có nghiệm.Tìm nghiệm kép đó.
b)Tìm m để phương trình có hai nghiệm \(x_1,x_2\) sao cho \(\dfrac{x^2_1+x^2_2}{2}-x_1-x_2\) đạt giá trị nhỏ nhất.
a: Δ=(2m-2)^2-4(m^2-9)
=4m^2-8m+4-4m^2+36=-8m+40
Để pt có nghiệm kép thì -8m+40=0
=>m=5
=>x^2-2(5-1)x+5^2-9=0
=>x^2-8x+16=0
=>x=4
b: Để PT có 2 nghiệm thì -8m+40>=0
=>m<=5
\(M=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)
\(=\dfrac{\left(2m-2\right)^2-2\left(m^2-9\right)}{2}-\left(2m-2\right)\)
\(=2\left(m-1\right)^2-m^2+9-2m+2\)
=2m^2-4m+2-m^2-2m+11
=m^2-6m+13
=(m-3)^2+4>=4
Dấu = xảy ra khi m=3
GIÚP MÌNH VỚI :))
1) Cho phương trình: 2x2 - ( 2m + 1 ) x + m2 - 9m + 39 = 0
a. Giải phương trình khi m=9
b. Tìm m để phương trình có 2 nghiệm phân biệt
2) Cho phương trình: x2 - 2 (m - 1) x -3 - m =0
a. Giải phương trình khi m=-1
b) Tìm m để phương trình có 2 nghiệm phân biệt
cho phương trình ẩn x sau :(m-3)x+m^2 -9=0(1) a, giải phương trình với m=2 b,Tìm m để phương trình (1) có nghiệm duy nhất .Tìm nghiệm duy nhất đó
mk cảm ơn trước nha
a: Khi m=2 thì pt sẽ là \(-x-5=0\)
hay x=-5
b: Để phương trình có nghiệm duy nhất thì m-3<>0
hay m<>3
Giải và biện luận các phương trình sau (với m là tham số):
a) mx – x – m + 2 = 0
\(b) m^2x + 3mx – m^2 + 9 = 0 \)
\(c) m^3x – m^2 - 4 = 4m(x – 1)\)
2) Cho phương trình ẩn x: . Hãy xác định các giá trị của k để phương trình trên có nghiệm x = 2.
\(mx-x-m+2=0\)
\(x\left(m-1\right)=m-2\)
Nếu m=1 ⇒ \(0x=-1\) (vô nghiệm)
Nếu m≠1 ⇒ \(x=\dfrac{m-2}{m-1}\)
Vậy ...
bài 9 các cặp phương trình sau có tương đương hay không?
d, x+2=0 và \(\dfrac{x}{x+2}=0\)
bài 8 cho phương trình (m\(^2\)-9)x-3=m. Giải phương trình trong các trường hợp sau:
a,m=2 b,m=3 c,m=-3
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
Bài 1:Cho biểu thức P=√x + 1/√x - 2 + 2√x/√x +2 + 2+5√x /4-x
a)Rút gọn P
b)Tìm x để P=2
Bài 2:Cho hệ phương trình x+my=9 và mx-3y=4
a)Giải hệ phương trình với m=3
b)Tìm m để hệ phương trính có nghiệm x=-1,y=3
Bài 1:
a) Ta có: \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Để P=2 thì \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(\Leftrightarrow3\sqrt{x}=2\left(\sqrt{x}+2\right)\)
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow3\sqrt{x}-2\sqrt{x}=4\)
\(\Leftrightarrow\sqrt{x}=4\)
hay x=16(nhận)
Vậy: Để P=2 thì x=16
2.
a, \(m=3\), hệ phương trình trở thành:
\(\left\{{}\begin{matrix}x+3y=9\\3x-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=13\\y=\dfrac{3x-4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{23}{12}\end{matrix}\right.\)
b, \(\left(x;y\right)=\left(-1;3\right)\) là nghiệm của hệ, suy ra:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{10}{3}\\m=-13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại giá trị m thỏa mãn
Biết \(\sqrt{3x-x^2}\) +\(\sqrt{x^2-6x=13}\) =\(\sqrt{\left(x-1\right)\left(5-x\right)}\)(1) là phương trình hệ quả của phương trình \(\sqrt{m-x}\) =\(\sqrt{x+1}\) +\(\sqrt{4-x}\). Tìm m.
A.m=1 B.m=12 C.m=9 D.Không tồn tại m.