Cho phương trình 4 x - m . 2 x + 1 + m + 2 với m là tham số. Gọi S là tập hợp các giá trị của m sao cho phương trình trên có hai nghiệm dương phân biệt. Biết S là một khoảng có dạng a , b . Tính b - a
A. 1.
B. 3.
C. 4.
D. 2.
cho phương trình \(x^4-2\left(m+1\right)x^2+m-2=0\) Tìm m để:
a) Phương trình đã cho có 4 nghiệm phân biệt.
b) Phương trình đã cho vô nghiệm.
c) Phương trình đã cho có đúng hai nghiệm.
Đặt \(x^2=t\) phương trình trở thành:
\(t^2-2\left(m+1\right)t+m-2=0\) (1)
a. Phương trình có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(m-2\right)>0\\t_1+t_2=2\left(m+1\right)>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+m+3>0\left(\text{luôn đúng}\right)\\m>-1\\m>2\end{matrix}\right.\)
\(\Rightarrow m>2\)
b. Do \(\Delta'=m^2+m+3>0;\forall m\) nên pt đã cho vô nghiệm khi (1) có 2 nghiệm pb đều âm
\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=2\left(m+1\right)< 0\\t_1t_2=m-2>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
c. Pt có đúng 2 nghiệm khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow t_1t_2=m-2< 0\Rightarrow m< 2\)
Cho phương trình : \(\sqrt{x+4\sqrt{x-4}}+x+2+\sqrt{x-4}=m+2\)
a, Giải phương trình khi m=4
b, Xác định m để phương trình có nghiệm
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
điểm) Cho phương trình 2 2
x m x m m 2 2 2 4 0 với m là tham số.
a) Giải phương trình khi m 2.
b) Tìm m để phương trình có nghiệm phân 1 2 x x , thỏa mãn 1 2 x x 6.
Cho phương trình (ẩn x): \(\left(m^2-4\right)x^2+2\left(m+2\right)x+1=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có nghiệm duy nhất
\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)
a) Cho phương trình $x^{2}-m x-10 m+2=0$ có một nghiệm $x_{1}=-4$. Tìm $m$ và nghiệm còn lại.
b) Cho phương trình $x^{2}-6 x+7=0 .$ Không giải phương trình, hãy tính tổng và tích của hai nghiệm của phương trình đó.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
Vậy m=3, và ngiệm còn lại x2=7
a)
m = 3
x2=7
Cho phương trình $x^{2}-2(m+1) x-4 m-12=0$ (ẩn $x$ ). Tìm $m$ để phương trình có hai nghiệm phân biệt $x_{1}, x_{2}$ sao cho $x_{1}-x_{2}=4$.
Để pt có 2 nghiệm pb khi \(\Delta>0\)
\(\Delta=\left(2m+2\right)^2-4\left(-4m-12\right)=4m^2+8m+4+16m+48\)
\(=4m^2+24m+52=4m^2+2.2m.6+36+16=\left(2m+6\right)^2+16>0\)
Vậy ta có đpcm
Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=-4m-12\end{cases}}\)
Ta có : \(x_1-x_2=4\Leftrightarrow\left(x_1-x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2-2x_1x_2=16\)(*)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(-4m-12\right)\)
\(=4m^2+16m+28\)
Thay vào (*) ta được : \(4m^2+16m+28-2\left(-4m-12\right)=16\)
\(\Leftrightarrow4m^2+24m+52=0\Leftrightarrow m=-3\pm2i\)
Cho phương trình 2
x x m 5 4 0 , ẩn x, tham số m.
a) Giải phương trình với m = 0.
b) Tìm m để phương trình có 2 nghiệm phân biệt 1 2 x , x thỏa mãn: 2 2
1 2 x x 23
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Cho phương trình : x2 - (m + 4)x + 4m = 0
a/ Tìm m để phương trình có một nghiệm là 2 . Tìm nghiệm còn lại của phương trình .
b/ Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1, x2 thỏa mãn :
x12 + (m + 4)x2 = 16
\(x^2-\left(m+4\right)x+4m=0\) (1)
a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)
Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy nghiệm còn lại là 4
b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)
Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)
\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)
Theo viet có: \(x_1+x_2=m+4\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)
\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)
\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)
\(\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)
Vậy...