Cho phương trình 4 2 x - 10 . 4 x + 16 = 0 có 2 nghiệm x 1 , x 2 . Tổng các nghiệm của phương trình trên bằng:
A. 2
B. 10
C. 3 2
D. 16
Tổng các nghiệm của phương trình(x mũ 2 +4)(x+6)(x mũ 2 -4)=0 là A.16 B.6 C.-10 D.-6
Bài 2 giải phương trình :
a)10 / x+2 = 1 + 1 / x-2
b)x+2 / x^2 +2x +4 + x-2 / x^ - 2x+4 = 32 / x(x^4 + 4x^3 + 16)
Giải phương trình: \(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
Điều kiện:\(x\ne0\)
Đặt \(\frac{x}{3}-\frac{4}{x}=t\).Ta có:\(t^2=\left(\frac{x}{3}-\frac{4}{x}\right)^2=\frac{x^2}{9}-2.\frac{x}{3}.\frac{4}{x}+\frac{16}{x^2}=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\)
\(\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=t^2+\frac{8}{3}\).Thay vào pt ta có:\(t^2+\frac{8}{3}=\frac{10}{3}.t\)
\(\Leftrightarrow3t^2-10t+8=0\)\(\Leftrightarrow3t^2-4t-6t+8=0\)
\(\Leftrightarrow t\left(3t-4\right)-2\left(3t-4\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t-4\right)=0\Rightarrow\orbr{\begin{cases}t=2\\t=\frac{4}{3}\end{cases}}\)
Với \(t=2\) thì \(\frac{x^2-12}{3x}=2\Leftrightarrow x^2-12-6x=0\)\(\Rightarrow x^2-6x+9-21=0\)
\(\Leftrightarrow\left(x-3\right)^2=21\Rightarrow\orbr{\begin{cases}x-3=\sqrt{21}\\x-3=-\sqrt{21}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{21}+3\\x=3-\sqrt{21}\end{cases}}\)
Với \(t=\frac{4}{3}\) thì \(\frac{x^2-12}{3x}=\frac{4}{3}\Leftrightarrow x^2-4x-12=0\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
Tập nghiệm của pt S=\(\left\{\sqrt{21}+3;3-\sqrt{21};-2;6\right\}\)
Giải mỗi phương trình sau:
a) \({9^{16 - x}} = {27^{x + 4}}\)
b) \({16^{x - 2}} = 0,{25.2^{ - x + 4}}\)
a)
\(9^{16-x}=27^{x+4}\\ \Leftrightarrow3^{2.\left(16-x\right)}=3^{3.\left(x+4\right)}\\ \Leftrightarrow2.\left(16-x\right)=3.\left(x+4\right)\\ \Leftrightarrow32-2x-3x-12=0\\ \Leftrightarrow-5x=-20\Leftrightarrow x=4\)
b)
\(16^{x-2}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4\left(x-2\right)}=0,25.2^{-x+4}\\ \Leftrightarrow2^{4x-8+x-4}=0,25\\ \Leftrightarrow2^{5x-12}=0,25\Leftrightarrow5x-12=\log_20,25\\ \Leftrightarrow5x-12=-2\\ \Leftrightarrow x=2\)
giải phương trình:
\(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
\(\frac{x^2}{9}+\frac{16}{x^2}=\frac{10}{3}\left(\frac{x}{3}-\frac{4}{x}\right)\)
\(\Leftrightarrow\frac{x^2}{9}-\frac{10x}{9}+\frac{40}{3x}+\frac{16}{x^2}=0\)
\(\Leftrightarrow\frac{x^4-10x^3+120x+144}{9x^2}=0\)
\(\Leftrightarrow x^4-10x^3+120x+144=0\)
\(\Leftrightarrow x^4-6x^3-12x^2-4x^3+24x^2+48x-12x^2+72x+144=0\)
\(\Leftrightarrow x^2\left(x^2-6x-12\right)-4x\left(x^2-6x-12\right)-12\left(x^2-6x-12\right)=0\)
\(\Leftrightarrow\left(x^2-4x-12\right)\left(x^2-6x-12\right)=0\)
\(\Leftrightarrow\left(x^2+2x-6x-12\right)\left(x^2-6x-12\right)=0\)
\(\Leftrightarrow\left[x\left(x+2\right)-6\left(x+2\right)\right]\left(x^2-6x-12\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+2\right)\left(x^2-6x-12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-6=0\\x+2=0\\x^2-6x-12=0\left(1\right)\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=-2\end{array}\right.\)(tm)
\(\Delta_{\left(1\right)}=\left(-6\right)^2-\left(-4\left(1.12\right)\right)=84\)
\(\Rightarrow\)\(x_{1,2}=\frac{6\pm\sqrt{84}}{2}\) (tm)
Vậy pt có nghiệm là \(x=-2;x=6\)và \(x=\frac{6\pm\sqrt{84}}{2}\)
giải phương trình x(x+2)(x+4)(x+6)=x^4-16
x(x + 2)(x + 4)(x + 6) = x4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x2 + 4)(x - 2) ] = 0
=> (x + 2). (x3 + 10x2 + 24x - x3 + 2x2 - 4x + 8) = 0
=> (x + 2) . (12x2 + 20x + 8) = 0
=> (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
x(x + 2)(x + 4)(x + 6) = x 4 - 16
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x 2 - 4)
=> x(x + 2)(x + 4)(x + 6) = (x 2 + 4)(x + 2)(x - 2)
=> (x + 2). [ x(x + 4)(x + 6) - (x 2 + 4)(x - 2) ] = 0
=> (x + 2). (x 3 + 10x 2 + 24x - x 3 + 2x 2 - 4x + 8) = 0
=> (x + 2) . (12x 2 + 20x + 8) = 0 => (x + 2)(x + 1)(3x + 2) = 0
=> x + 2 = 0 => x = -2
hoặc x + 1 = 0 => x = -1
hoặc 3x + 2 = 0 => x = -2/3
Vậy x = {-2 ; -1 ; -2/3}
Bài 2. Giải các phương trình sau. a) 3x - 2sqrt(x - 1) = 4 b) sqrt(4x + 1) - sqrt(x + 2) = sqrt(3 - x) c) (sqrt(x - 1) - sqrt(5 - x))(|10 - x| + 2x - 16) = 0
a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)
\(\Rightarrow3x-2\sqrt{x-1}-4=0\)
\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)
\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)
\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)
\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)
*TH1: x = 2 (t/m)
*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)
\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)
\(\Rightarrow3\sqrt{x-1}+3=2\)
\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)
Vậy S = {2}
b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )
\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)
\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)
\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)
=> x = 2
\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)
\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)
Cho phương trình:
x2-(m+4).x+4m=0 (m là tham số)
1)Giải phương trình khi m=(-1)
Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1;x2 thỏa mãn x12 +(m+4).x2=16
đăng 1 lần thôi :P
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)