Tìm n ∈ N * biết
a) 2 + 4 + 6 + . . . + 2 n = 210
b) 1 + 3 + 5 + . . . + 2 n - 1 = 225
tìm x thuộc n biết
A. 3\(^x\)=81x3
b.2\(^{x+1}\)=32
c. 3\(^{x+2}\):27=3
d. 2x2=32
e. (2x-1)4=81
f. (2x-6)4=0
a: =>3^x=3^4*3=3^5
=>x=5
b: =>\(2^{x+1}=2^5\)
=>x+1=5
=>x=4
c: \(\Leftrightarrow3^{x+2-3}=3\)
=>x-1=1
=>x=2
d: \(\Leftrightarrow x^2=\dfrac{32}{2}=16\)
=>x=4 hoặc x=-4
e: (2x-1)^4=81
=>2x-1=3 hoặc 2x-1=-3
=>2x=4 hoặc 2x=-2
=>x=-1 hoặc x=2
f: (2x-6)^4=0
=>2x-6=0
=>x-3=0
=>x=3
a) \(3^x=81\cdot3\)
\(\Rightarrow3^x=3^4\cdot3\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
b) \(2^{x+1}=32\)
\(\Rightarrow2^{x+1}=2^5\)
\(\Rightarrow x+1=5\)
\(\Rightarrow x=4\)
c) \(3^{x+2}:27=3\)
\(\Rightarrow3^{x+2}:3^3=3\)
\(\Rightarrow3^{x+2-3}=3\)
\(\Rightarrow3^{x-1}=3\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=2\)
d) \(2x^2=32\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x^2=4^2\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
e) \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
f) \(\left(2x-6\right)^4=0\)
\(\Rightarrow2x-6=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=6:2\)
\(\Rightarrow x=3\)
\(a,3^x=81\cdot3\\ \Leftrightarrow3^x=3^4\cdot3\\ \Leftrightarrow3^x=3^5\\ \Leftrightarrow x=5\\ d,2^{x+1}=32\\ \Leftrightarrow x+1=5\\ \Leftrightarrow x=4\\ c,3^{x+2}:27=3\\ \Leftrightarrow3^{x+2}:3^3=3\\ \Leftrightarrow3^{x-1}=3\\ \Leftrightarrow x-1=1\\ \Leftrightarrow x=2\\ d,2x^2=32\\ \Leftrightarrow x^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\\ e,\left(2x-1\right)^4=81\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ f,\left(2x-6\right)^4=0\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\)
1.26 tìm n thuộc N,biết
a) 15⋮(n-4)
b)(2n+5)⋮(n-2)
a: =>n-4 thuộc Ư(15)
mà n thuộc N
nên n-4 thuộc {-3;-1;1;3;5;15}
=>n thuộc {1;3;5;7;9;19}
b: =>2n-4+9 chia hết cho n-2
=>n-2 thuộc {1;-1;3;-3;9;-9}
mà n>=0
nên n thuộc {3;1;5;11}
tìm số tự nhiên N, biết
a) N<1,75
b)0,9< N <2,01
c) N < 5/2
d)2,9 < N < 17/4
a)n=1;0
b)N=1;2
c)N=2;1;0
d)N=3;4
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
Tìm X e N biết
a) 29 + 2x = 59
b) 2020-6(17-x)2002
a) 29 + 2x = 59
2x = 59 - 29
2x = 30
x = 30 : 2
x = 15
b) 2020 - 6(17-x) = 2002
6(17-x) = 2020 - 2002
6(17-x) = 18
17-x = 18 : 6
17-x = 3
x = 17 - 3
x = 14
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
1.Tìm x,biết
a.5/7+4/3:x=1/7
b.5/3xX-1/4=2/6
a. \(\dfrac{5}{7}+\dfrac{4}{3}:x=\dfrac{1}{7}\)
<=> \(\dfrac{5}{7}+\dfrac{4}{3}.\dfrac{1}{x}=\dfrac{1}{7}\)
<=> \(\dfrac{5}{7}+\dfrac{4}{3x}=\dfrac{1}{7}\) ĐKXĐ: x \(\ne\) 0
<=> \(\dfrac{15x}{21x}+\dfrac{28}{21x}=\dfrac{3x}{21x}\)
<=> 15x + 28 = 3x
<=> 15x - 3x = -28
<=> 12x = -28
<=> x = \(\dfrac{-28}{12}=-\dfrac{7}{3}\)
b. \(\dfrac{5}{3}x.\dfrac{-1}{4}=\dfrac{2}{6}\)
<=> \(\dfrac{-5x}{12}=\dfrac{2}{6}\)
<=> -5x . 6 = 12 . 2
<=> -30x = 24
<=> x = \(-\dfrac{4}{5}\)
Tìm x biết
a, x+\(\dfrac{7}{12}\)=\(\dfrac{-5}{6}\) b, (\(\dfrac{2}{9}\)-x):\(\dfrac{5}{6}\)=\(\dfrac{-4}{3}\) c, \(\dfrac{-1}{2}\)=\(\dfrac{x-1}{6}\) d, \(\dfrac{4}{5}\):(\(\dfrac{3}{5}\)x-\(\dfrac{2}{3}\))=\(\dfrac{1}{5}\)
a, \(x=-\dfrac{5}{6}-\dfrac{7}{12}=\dfrac{-10-7}{12}=-\dfrac{17}{12}\)
b, \(\dfrac{2}{9}-x=-\dfrac{4}{3}.\dfrac{5}{6}=-\dfrac{24}{18}=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{2}{9}+\dfrac{4}{3}=\dfrac{14}{9}\)
c, \(-3=x-1\Leftrightarrow x=-2\)
d, \(\dfrac{3}{5}x-\dfrac{2}{3}=\dfrac{4}{5}:\dfrac{1}{5}=4\Leftrightarrow\dfrac{3}{5}x=4+\dfrac{2}{3}=\dfrac{14}{3}\Leftrightarrow x=\dfrac{14}{3}:\dfrac{3}{5}=\dfrac{70}{9}\)
2) tìm x biết
a) \(\left(\dfrac{-3}{4}x+1\right):\dfrac{2}{3}=1\)
b) (x+3)=6
\(\left(-\dfrac{3}{4}x+1\right)\div\dfrac{2}{3}=1\)
\(-\dfrac{3}{4}x+1=1\times\dfrac{2}{3}\)
\(-\dfrac{3}{4}x+1=\dfrac{2}{3}\)
\(-\dfrac{3}{4}x=\dfrac{2}{3}-1\)
\(-\dfrac{3}{4}x=-\dfrac{1}{3}\)
\(x=-\dfrac{1}{3}\div\left(-\dfrac{3}{4}\right)\)
\(x=\dfrac{4}{9}\)
x+3=6
x=6-3
x=3
Tìm ,x,y,z,t biết
a,12/-6=x/5=-y/3=2/-17=-t/-9
b,-24/-6=x/3=4/y2=z3/-2
a: Sửa đề: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{2}{-z}=\dfrac{-t}{-9}\)
=>\(\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{-2}{z}=\dfrac{t}{9}=-2\)
=>\(x=-2\cdot5=-10;y=-2\cdot\left(-3\right)=6;z=\dfrac{-2}{-2}=1;t=9\cdot\left(-2\right)=-18\)
b: \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}\)
=>\(\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{z^3}{-2}=4\)
=>\(\left\{{}\begin{matrix}x=4\cdot3=12\\y^2=\dfrac{4}{4}=1\\z^3=-2\cdot4=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y\in\left\{1;-1\right\}\\z=-2\end{matrix}\right.\)