Bài 1:
a: Gọi d=ƯCLN(n+2;n+3)
=>n+2⋮d và n+3⋮d
=>n+3-n-2⋮d
=>1⋮d
=>d=1
=>ƯCLN(n+2;n+3)=1
=>n+2 và n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;9n+4)
=>\(\begin{cases}2n+1\vdots d\\ 9n+4\vdots d\end{cases}\Rightarrow\begin{cases}18n+9\vdots d\\ 18n+8\vdots d\end{cases}\)
=>18n+9-18n-8⋮d
=>1⋮d
=>d=1
=>ƯCLN(2n+1;9n+4)=1
=>2n+1 và 9n+4 là hai số nguyên tố cùng nhau
Bài 2:
a: ƯCLN(a;b)=24
=>a⋮24 và b⋮24
a+b=192
mà a⋮24 và b⋮24
nên (a;b)∈{(24;168);(168;24);(48;144);(144;48);(72;120);(120;72);(96;96)}
mà ƯCLN(a;b)=24
nên (a;b)∈{(24;168);(168;24);(72;120);(120;72)}
b: ƯCLN(a;b)=6
=>a⋮6 và b⋮6
ab=216
mà a⋮6 và b⋮6
nên (a;b)∈{(6;36);(36;6);(12;18);(18;12)}