Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
help me

1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3                                     b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
giúp mik ik mà mn ơiiii mik sẽ tim cho

Akai Haruma
9 tháng 1 2023 lúc 19:04

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

Akai Haruma
9 tháng 1 2023 lúc 19:07

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

Akai Haruma
9 tháng 1 2023 lúc 19:08

Bài 2:

b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.

Khi đó:

$ab=6x.6y=216$

$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$

$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$


Các câu hỏi tương tự
help me
Xem chi tiết
help me
Xem chi tiết
Chi Quỳnh
Xem chi tiết
secret1234567
Xem chi tiết
lyli
Xem chi tiết
Lê Thị Thanh Quỳnh
Xem chi tiết
Trần Châu Giang
Xem chi tiết
Danh Đêm Vô
Xem chi tiết
ledieulinh
Xem chi tiết