Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
vu duy anh quân
Xem chi tiết
Đỗ Bích Ngọc
Xem chi tiết
missing you =
18 tháng 7 2021 lúc 17:00

đặt \(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(=>A^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(=>A^2\le\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right].3\)

\(=>A^2\le\left[2\left(a+b+c\right)\right]3=2.3=6\)

\(=>A\le\sqrt{6}\left(dpcm\right)\)

dấu"=" xảy ra<=>a=b=c=1/3

Edogawa Conan
18 tháng 7 2021 lúc 17:07

Ta có:\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\)

  \(\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)=3.2=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)

Dấu "=" xảy ra <=> a=b=c=1/3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2019 lúc 13:19

Hồ Văn Đức
Xem chi tiết
Hi Mn
Xem chi tiết
Phía sau một cô gái
31 tháng 12 2022 lúc 21:50

Theo đề, ta có:

\(\left\{{}\begin{matrix}a\ge c+d\\b\ge c+d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-c\ge d\ge0\\b-d\ge c\ge0\end{matrix}\right.\) 

\(\Rightarrow\left(a-c\right)\left(b-d\right)\ge cd\)

\(\Leftrightarrow ab-bc-ad+cd\ge cd\)

\(\Leftrightarrow\) \(ab\ge ad+bc\left(đpcm\right)\)

 

Võ Triệu
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 14:04

Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)

nguyễn ngọc bảo trân
Xem chi tiết
Lê Quang Phúc
6 tháng 10 2019 lúc 15:20

a/b = b/c = c/d = (a+b+c)/(b+c+d)

=> (a+b+c/b+c+d)^6054 = (a/b)^6054

Lê Quang Thắng
Xem chi tiết
tep.
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 16:36

Ta có:

\(\dfrac{1}{a+3b}+\dfrac{1}{c+3}\ge\dfrac{4}{a+3b+c+3}=\dfrac{4}{2b+6}=\dfrac{2}{b+3}\)

Tương tự: 

\(\dfrac{1}{b+3c}+\dfrac{1}{a+3}\ge\dfrac{2}{c+3}\)

\(\dfrac{1}{c+3a}+\dfrac{1}{b+3}\ge\dfrac{2}{a+3}\)

Cộng vế:

\(\sum\dfrac{1}{a+3b}+\sum\dfrac{1}{a+3}\ge\sum\dfrac{2}{a+3}\)

\(\Rightarrow\sum\dfrac{1}{a+3b}\ge\sum\dfrac{1}{a+3}\) (đpcm)