Quy đồng mẫu thức các phân thức: x + 1 x - x 2 ; x + 2 2 - x + 2 x 2
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}\):\(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
giúp mik với mik cần gấp
quy đồng mẫu thức các phân thức a) \(\dfrac{1}{2x^3y}:\) \(\dfrac{2}{3xy^2z^3}\):\(\dfrac{5}{4yz}\)
b) \(\dfrac{x+1}{10x^3-40x}\) và \(\dfrac{5}{8x^3+16x^2}\)
bài 2 áp dụng quy tắc đổi dấu hãy quy đồng mẫu thức các phân thức
\(\dfrac{2-x}{3x-3x^2}\) và \(\dfrac{x^2-2}{4x^5-4x^2}\)
Bài 2:
a: \(\dfrac{1}{2x^3y}=\dfrac{6yz^3}{12x^3y^2z^3}\)
\(\dfrac{2}{3xy^2z^3}=\dfrac{2\cdot4x^2}{12x^3y^2z^3}=\dfrac{8x^2}{12x^3y^2z^3}\)
Quy đồng mẫu thức các phân thức sau x x 3 - 1 , x + 1 x 2 - x , x - 1 x 2 + x + 1
Quy đồng mẫu thức của các phân thức x − 2 3(x − 1) , 5 2(x + 1) , x + 3 x 2 − 1 ta được:
A. x − 2 3(x − 1) = 2(x − 2)(x + 1) 6(x 2 − 1) , 5 2(x + 1) = 5(x + 1) 6(x 2 − 1) , x + 3 x 2 − 1 = 2(x + 3) 6(x 2 − 1)
B. x − 2 3(x − 1) = 2(x − 2) 6(x 2 − 1) , 5 2(x + 1) = 15(x − 1) 6(x 2 − 1) , x + 3 x 2 − 1 = 6(x + 3) 6(x 2 − 1)
C. x − 2 3(x − 1) = 2(x − 2)(x + 1) 6(x 2 − 1) , 5 2(x + 1) = 15(x − 1) 6(x 2 − 1) , x + 3 x 2 − 1 = 6 6(x 2 − 1)
D. x − 2 3(x − 1) = 2(x − 2)(x + 1) 6(x 2 − 1) , 5 2(x + 1) = 15(x − 1) 6(x 2 − 1) , x + 3 x 2 − 1 = 6(x + 3) 6(x 2 − 1)
x − 2 3 x − 1 = 2 x + 1 x − 2 3.2 x + 1 x − 1 = 2 x − 2 6 x 2 − 1
Quy đồng mẫu thức các phân thức sau: a) 1/x^2y và 3/xy b) x/(x^2+2xy+y^2) và 2x/(x^2+xy)
a: 1/x^2y=1/x^2y
3/xy=3x/x^2y
b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)
\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)
Cho các phân thức x − 3 2 x 2 − 3 x − 2 và 2 x − 1 x 2 + x − 6 với x ≠ − 3 ; x ≠ − 1 2 và x ≠ 2 . Không dùng cách phân tích các mẫu thức thành nhân tử, hãy chứng tỏ rằng có thể quy đồng mẫu thức hai phân thức này với mẫu thức chung là N = 2 x 3 + 3 x 2 − 11 x − 6 .
quy đồng mẫu thức phân thức 4/x^2-3x+2 và 1/x^2-x
\(\dfrac{4}{x^2-3x+2}\) và \(\dfrac{1}{x^2-x}\)
\(\dfrac{4}{x^2-3x+2}=\dfrac{4}{\left(x-1\right)\left(x-2\right)}\)
\(\dfrac{1}{x^2-x}=\dfrac{1}{x\left(x-1\right)}\)
`MSC: x(x-1)(x-2)`
\(\dfrac{4}{\left(x-1\right)\left(x-2\right)}=\dfrac{4\cdot x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{4x}{x\left(x-1\right)\left(x-2\right)}\)
\(\dfrac{1}{x\left(x-1\right)}=\dfrac{1\cdot\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x-2}{x\left(x-1\right)\left(x-2\right)}\)
Quy đồng mẫu thức các phân thức sau 1/3x+xy, 2y+2x và 1/x^2+2xy+y^2
\(\dfrac{1}{3x+xy}=\dfrac{1}{x\left(y+3\right)}=\dfrac{\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(2x+2y=2\left(x+y\right)=\dfrac{2\left(x+y\right)\cdot x\left(y+3\right)\left(x+y\right)^2}{x\left(y+3\right)\left(x+y\right)^2}\)
\(\dfrac{1}{x^2+2xy+y^2}=\dfrac{3x+xy}{x\left(y+3\right)\left(x+y\right)^2}\)
a) Quy đồng mẫu thức các phân thức: 1x+2;x+1x2−4x−4 và 52−x
Check lại lỗi CT em