Cho C : y = x 3 − 3 x 2 + 2 . Tiếp tuyến của (C) song song với đường thẳng − 3 x − y + 5 = 0 có phương trình là
A. y = − 3 x + 2
B. y = − 3 x - 3
C. y = − 3 x - 2
D. y = − 3 x + 3
1. Tìm điểm M thuộc (C) : y =\(\dfrac{x+1}{x-1}\)sao cho tiếp tuyến của (C) tại M vuông góc với IM, I là tâm đối xứng
2. Tìm những điểm trên đt y = -2 mà từ đó có thể kẻ đc 3 tiếp tuyến tới (C): y = \(-x^3+3x^2-2\)
3. Tìm những điểm trên đt y = 2 mà từ đó có thể kẻ đc tới (C): y = \(x^3-3x^{^{ }2}+2\)
a, đúng 2 tiếp tuyến
b, 3 tiếp tuyễn đến (C) trong đó có 2 tiếp tuyên vuông góc
4. Tìm M thuộc đồ thị y = \(\dfrac{2x-3}{x-2}\)sao cho tiếp tuyến của M tại (C) cắt 2 tiệm cận tại A,B sao cho AB nhỏ nhất.
Đợi khi nào mk học đã nha!!Mk hứa mk sẽ giải bài này!!
cho cac so x,y,z tuy y
cmr
x^2+y^2+z^2/3>= (x+y+x/3)^2
Bài 1: Cho \(y=\dfrac{1}{3}x^3-2x^2+3x\). Viết phương trình tiếp tuyến của (C) đi qua A(\(\dfrac{4}{9};\dfrac{4}{3}\))
Bài 2: Cho \(y=\dfrac{1}{2}x^4-3x^2+\dfrac{3}{2}\) (C). Viết phương trình tiếp tuyến của (C) đi qua A(\(0;\dfrac{3}{2}\))
1//Cho hàm số y=x3- 2x2+ 2x có đồ thị (C). Gọi x1,x2 là hoành độ các điểm M,N trên (C), mà tại đó tiếp tuyến của (C) vuông góc với đường thẳng y=-x+2017. Khi đó x1+x2 bằng bao nhiêu?
2// Hoành độ tiếp điểm của tiếp tuyến song song với trục hoành của đồ thị hàm số y=x3-3x+2
3// Tiếp tuyến của đồ thị y=\(\frac{x^3}{3}+3x^2-2\) Có hệ số góc k=-9 , có phương trình là gì
4//Cho hs \(y=-x^3+3x^3-3\) có đồ thị (C) Số tiếp tuyến (C) vuông góc với đường thẳng \(y=\frac{1}{9}x+2017\)
1.
Tiếp tuyến vuông góc với \(y=-x+2017\) nên có hệ số góc \(k=\frac{-1}{-1}=1\)
\(y'=3x^2-4x+2=1\)
\(\Rightarrow3x^2-4x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2=1+\frac{1}{3}=\frac{4}{3}\)
2.
Tiếp tuyến song song Ox nên có hệ số góc \(k=0\)
\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
3.
\(y'=x^2+6x=-9\Rightarrow\left(x+3\right)^2=0\Rightarrow x=-3\Rightarrow y=16\)
Pt tiếp tuyến: \(y=-9\left(x+3\right)+16=-9x-11\)
4.
Tiếp tuyến vuông góc \(y=\frac{1}{9}x+2017\) có hệ số góc \(k=\frac{-1}{\frac{1}{9}}=-9\)
\(y'=-3x^2+6x=-9\Leftrightarrow3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Có 2 tiếp điểm nên có 2 tiếp tuyến thỏa mãn
câu 1.cho đường tròn (c) : \(x^2+y^2+4x+4y-17=0\). viết phương trình tiếp tuyến của (C) biết tiếp tuyến tạo với Õ một góc \(60^0\)
câu 2. cho hai đường trong (c1)\(x^2+y^2-2x-2y=0\), (c2) \(x^2+y^2-4x-6y-3=0\) viết phương trình tiếp tuyến chung của 2 đường tròn
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
2.
(C1) có tâm \(I\left(1;1\right)\) bán kính \(R_1=\sqrt{2}\)
(C2) có tâm \(J\left(2;3\right)\) bán kính \(R_2=4\)
Gọi tiếp tuyến chung d có pt: \(ax+by+c=0\)
\(\left\{{}\begin{matrix}d\left(I;d\right)=R_1\\d\left(J;d\right)=R_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left|a+b+c\right|}{\sqrt{a^2+b^2}}=\sqrt{2}\\\dfrac{\left|2a+3b+c\right|}{\sqrt{a^2+b^2}}=4\end{matrix}\right.\)
\(\Rightarrow2\sqrt{2}\left|a+b+c\right|=\left|2a+3b+c\right|\)
? Đề nghiêm túc đấy chứ? Cho kiểu này thì sấp mặt, tối thiểu pt (C1) cũng có dạng \(x^2+y^2-2x-2y+1=0\) để học sinh còn thở chứ.
Ủa, nhìn lại thì bài 2 người ta cho đề kiểu hack não.
\(\overrightarrow{IJ}=\left(1;2\right)\Rightarrow IJ=\sqrt{5}< R_2-R_1=4-\sqrt{2}\)
Do đó \(\left(C_2\right)\) chứa \(\left(C_1\right)\) nên ko tồn tại tiếp tuyến chung của 2 đường tròn
Cho f(x) = \(\dfrac{2x+2}{x-1}\) (C). Lập PT tiếp tuyến của (C) khi:
a, Tiếp tuyến song song với : y = - 4x + 8
b, Tiếp tuyến vuông góc với : y = 4x + 3
a: \(f'\left(x\right)=\dfrac{\left(2x+2\right)'\cdot\left(x-1\right)-\left(2x+2\right)\cdot\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{2\left(x-1\right)-2x-2}{\left(x-1\right)^2}=\dfrac{-4}{\left(x-1\right)^2}\)
y-y0=f'(x0)*(x-x0)
=>y=y0+f'(x0)*(x-x0)=f(x0)+f'(x0)(x-x0)
(d)//-4x+8 nên f(x0)=-4
=>2x+2=-4x+4
=>6x=2
=>x=1/3
f'(1/3)=-4/(1/3-1)^2=-9
y=-4+(-9)(x-1/3)=-4-9x+3=-9x-1
b: (d) vuông góc y=4x+3
=>(d): y=-1/4x+b
(d): y=f(x0)+f'(x0)*(x-x0)
=>f(x0)=-1/4
=>2x+2=-1/4(x-1)=-1/4x+1/4
=>9/4x=-7/4
=>x=-7/9
f'(-7/9)=-4/(-7/9-1)^2=-81/64
y=f(-7/9)+f'(-7/9)*(x+7/9)
=-1/4-81/64(x+7/9)
=-81/64x-79/64
Cho hàm số : \(y = {x^3} - 3(m + 3){x^2} + 3\) \((C)\) .Tìm M sao cho qua \({\rm{A}}( - 1;1)\) kẻ tiếp tuyến đến \({\rm{(}}{{\rm{C}}_1})\) là \({\Delta _1}:y = - 1\) và \({\Delta _2}\) tiếp xúc với \((C)\) tại N và cắt \((C) \) tại \({\rm{P}} \ne {\rm{ N}}\) có hoành độ \(x=3\)
1. Cho đường tròn (c) : \(x^2+y^2+6x-2y=0\) và đường thẳng d : \(x-3y-4=0\)
Tính tiếp tuyến của (C) song song với (d)
2. Tìm giá trị của m để đường thẳng \(\Delta:3x+4y+3=0\) tiếp xúc với (C) : \(\left(x-m\right)^2+y^2=9\)
3. Xác đinh m để \(\left(C_m\right):x^2+y^2-4x+2\left(m+1\right)y+3m+7=0\) là phương trình của một đường tròn
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Cho parabol (P): y= x^2 -2x+3. Tiếp tuyến với (P) vuông góc với đường thẳng d: y=-x/4+2 có phương trình là?
Cho hàm số (C) : y= f(x) = \(\frac{X^3}{3}\) - 2x2 + 3x + 1. Viết phương trình tiếp tuyến của (C)
a) Biết tiếp tuyến vuông góc với d : y = x + 2
b) Biết tiếp tuyến song song với d : y = 3x + 2020
\(y'=x^2-4x+3\)
a/ Tiếp tuyến vuông góc với \(y=x+2\Rightarrow\) tiếp tuyến có hệ số góc k=-1
\(\Rightarrow x_0^2-4x_0+3=-1\)
\(\Leftrightarrow x_0^2-4x_0+4=0\Rightarrow x_0=2\)
\(\Rightarrow y\left(0\right)=\frac{5}{3}\)
Pt tiếp tuyến: \(y=-1\left(x-2\right)+\frac{5}{3}\Leftrightarrow y=-x+\frac{11}{3}\)
b/ Tiếp tuyến song song \(y=3x+2020\Rightarrow\) có hệ số góc \(k=3\)
\(\Leftrightarrow x_0^2-4x_0+3=3\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=1\\x_0=4\Rightarrow y_0=\frac{7}{3}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=3x+1\\y=3\left(x-4\right)+\frac{7}{3}\end{matrix}\right.\)