Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:02

a.

\(\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)^2-2sin^2\dfrac{x}{2}cos^2\dfrac{x}{2}=\dfrac{1}{2}\)

\(\Leftrightarrow2-\left(2sin\dfrac{x}{2}cos\dfrac{x}{2}\right)^2=1\)

\(\Leftrightarrow1-sin^2x=0\)

\(\Leftrightarrow cos^2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:04

b.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=\dfrac{7}{16}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=\dfrac{7}{16}\)

\(\Leftrightarrow16-12.sin^22x=7\)

\(\Leftrightarrow3-4sin^22x=0\)

\(\Leftrightarrow3-2\left(1-cos4x\right)=0\)

\(\Leftrightarrow cos4x=-\dfrac{1}{2}\)

\(\Leftrightarrow4x=\pm\dfrac{2\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 22:07

c.

\(\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow1-\dfrac{3}{4}\left(2sinx.cosx\right)^2=cos^22x+\dfrac{1}{4}\)

\(\Leftrightarrow3-3sin^22x=4cos^22x\)

\(\Leftrightarrow3=3\left(sin^22x+cos^22x\right)+cos^22x\)

\(\Leftrightarrow3=3+cos^22x\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 8:00

loading...  loading...  

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:17

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) =  - \frac{{\sqrt 2 }}{2}\;\;\;\; \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi }\\{3x - \frac{\pi }{4} =  - \frac{{3\pi }}{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = \pi  + k2\pi }\\{3x =  - \frac{\pi }{2} + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\\{x =  - \frac{\pi }{6} + \frac{{k2\pi }}{3}}\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

b) \(2{\sin ^2}x - 1 + \cos 3x = 0\;\;\;\;\; \Leftrightarrow \cos 2x + \cos 3x = 0\;\; \Leftrightarrow 2\cos \frac{{5x}}{2}\cos \frac{x}{2} = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos \frac{{5x}}{2} = 0}\\{\cos \frac{x}{2} = 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{{5x}}{2} = \frac{\pi }{2} + k\pi }\\{\frac{{5x}}{2} =  - \frac{\pi }{2} + k\pi }\\{\frac{x}{2} = \frac{\pi }{2} + k\pi }\\{\frac{x}{2} =  - \frac{\pi }{2} + k\pi }\end{array}} \right.\;\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x =  - \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x = \pi  + k2\pi }\\{x =  - \pi  + k2\pi }\end{array}} \right.\;\;\;\left( {k \in \mathbb{Z}} \right)\)

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\;\; \Leftrightarrow 2x + \frac{\pi }{5} = x - \frac{\pi }{6} + k\pi \;\;\; \Leftrightarrow x =  - \frac{{11\pi }}{{30}} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)

Sonyeondan Bangtan
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
phương mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 8 2023 lúc 19:51

33B

34B

Lê Thị Thủy Quỳnh
Xem chi tiết
Dương Ánh Ngọc
Xem chi tiết
Nguyễn Minh Nguyệt
6 tháng 4 2016 lúc 10:55

 Điều kiện : \(\begin{cases}\cos x\ne0\\\sin2x\ne0\end{cases}\)\(\Rightarrow x\ne\frac{k\pi}{2}\)

Ta có \(\tan x.\cot2x=\left(1+\sin x\right)\left(4\cos^2x+\sin x-5\right)\)\(\Leftrightarrow\tan x.\cot2x=3\sin x-4\sin^3x-1\)

\(\Leftrightarrow1+\tan x.\cot2x=\sin3x\Leftrightarrow\frac{\sin3x}{\cos x.\sin2x}=\sin3x\Leftrightarrow\sin3x\left(\frac{1}{\cos x.\sin2x}-1\right)=0\)

Nghiệm phương trình xảy ra :

- Hoặc \(\sin3x=0\Leftrightarrow x=\frac{n\pi}{3}\), so với điều kiện phương trình có nghiệm là \(x=\frac{\pi}{3}+m\pi,x=\frac{2\pi}{3}+m\pi\)

- Hoặc \(\sin2x\cos x=1\Rightarrow\begin{cases}\sin2x=1\\\cos x=1\end{cases}\) với mọi \(\begin{cases}\cos x=-1\\\sin2x=-1\end{cases}\) \(\Leftrightarrow\) Vô nghiệm

Vậy nghiệm của phương trình là : \(x=\frac{\pi}{3}+m\pi,x=\frac{2\pi}{3}+m\pi,m\in Z\)

New_New
Xem chi tiết
alibaba nguyễn
17 tháng 5 2017 lúc 19:04

Học cái viết đề đi b. Đọc không có ra

New_New
22 tháng 5 2017 lúc 19:49

đề nè

\(\left(1+cosx\right)\cdot\left(1+4^{cosx}\right)=3\cdot4^{cosx}\)

~P.T.D~
Xem chi tiết