Tính giá trị của các biểu thức:
a) A = 3 m 2 − 2 m 9 m 2 − 12 m + 4 tại m = − 8 ;
b) B = n 2 + 7 n + 6 n 3 + 6 n 2 − n − 6 tại n = 1000001 .
Cho 2 biểu thức:
A = x-2/x và B = 4x/x+1+x/1-x+2x/x^2-1
a) Tính giá trị biểu thức A khi x =2/3
b) Chứng minh : B =3x/x+1
c) Cho P=A.B Tìm tất cả các giá trị của m để Pt P=m có nghiệm duy nhất
a: Khi x=2/3 thì \(A=\dfrac{\dfrac{2}{3}-2}{\dfrac{2}{3}}=\dfrac{-4}{3}\cdot\dfrac{3}{2}=-2\)
b: \(B=\dfrac{4x}{x+1}-\dfrac{x}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x^2-4x-x^2-x+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x}{x+1}\)
Tính giá trị của biểu thức:
a) \(M = 2(a + b)\) tại \(a = 2\), \(b = - 3\);
b) \(N = - 3xyz\) tại \(x = - 2\), \(y = - 1\), \(z = 4\);
c) \(P = - 5{x^3}{y^2} + 1\) tại \(x = - 1\); \(y = - 3\).
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Cho biểu thức:
A= (\(\dfrac{x+2}{x-2}\)- \(\dfrac{4x^2}{4-x^2}\)- \(\dfrac{x-2}{x+2}\)) : \(\dfrac{x^3+x^2+2x}{x-2}\)
a) Tính giá trị của A khi |x+3|=5
b) Tìm các giá trị của x để A nhận giá trị nguyên
a: \(A=\dfrac{x^2+4x+4+4x^2-x^2+4x-4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{x\left(x^2+x+2\right)}\)
\(=\dfrac{4x^2+8x}{\left(x+2\right)}\cdot\dfrac{1}{x\left(x^2+x+2\right)}=\dfrac{4}{x^2+x+2}\)
|x+3|=5
=>x=2(loại) hoặc x=-8(nhận)
Khi x=-8 thì \(A=\dfrac{4}{64-8+2}=\dfrac{4}{58}=\dfrac{2}{29}\)
b: A nguyên
=>x^2+x+2 thuộc {1;-1;2;-2;4;-4}
=>x^2+x+2=2 hoặc x^2+x+2=4
=>x^2+x-2=0 hoặc x(x+1)=0
=>\(x\in\left\{1;0;-1\right\}\)
Tính giá trị của biểu thức:
a) \(3^2.5^3+9^2;\)
b) \(8^3:4^2-5^2;\)
c) \(3^3.9^2-5^2.9+18:6.\)
a) 32 . 53 + 92 = 9 . 125 + 81
= 1 125 + 81 = 1 206
b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7
c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3
= 2 187 - 225 + 3 = 1 962 + 3 = 1 965
a) 32 . 53 + 92 = 9 . 125 + 81
= 1 125 + 81 = 1 206
b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7
c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3
= 2 187 - 225 + 3 = 1 962 + 3 = 1 965
Cho biểu thức:A=6,8×(a+1,5)-0,96
a) Tính giá trị của A khi a=3, 2
b) Tìm giá trị của a để A=9, 24
GIÚP TUI ĐI MAMAMOO
Cho các đa thức:
A(x) = 2x^5 – 4x^3 + x^2 – 2x + 2
B(x) = x^5 – 2x^4 + x^2 – 5x + 3
C(x) = x^4 + 4x^3 + 3x^2 – 8x +4 3/16
1, Tính M(x) = A(x) – 2B(x) + C(x)
2, Tính giá trị của M(x) khi x = -√0,25
3, Có giá trị nào của x để M(x) = 0 không ?
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
tính giá trị biểu thức:
a) 9/5 + 9/5 : 9/5 b) 7/5 - 1/2 x 1/3
a) \(\dfrac{9}{5}+\dfrac{9}{5}:\dfrac{9}{5}\)
\(=\dfrac{9}{5}+\dfrac{9}{5}\times\dfrac{5}{9}\)
\(=\dfrac{9}{5}+1\)
\(=\dfrac{14}{5}\)
b) \(\dfrac{7}{5}-\dfrac{1}{2}\times\dfrac{1}{3}\)
\(=\dfrac{7}{5}-\dfrac{1}{6}\)
\(=\dfrac{42}{30}-\dfrac{5}{30}\)
\(=\dfrac{37}{30}\)
\(a,\dfrac{9}{5}+\dfrac{9}{5}:\dfrac{9}{5}\)
\(=\dfrac{9}{5}+\dfrac{9}{5}\times\dfrac{5}{9}\)
\(=\dfrac{9}{5}+1\)
\(=\dfrac{9}{5}+\dfrac{5}{5}\)
\(=\dfrac{14}{5}\)
\(b,\dfrac{7}{5}-\dfrac{1}{2}\times\dfrac{1}{3}\)
\(=\dfrac{7}{5}-\dfrac{1}{6}\)
\(=\dfrac{42}{30}-\dfrac{5}{30}\)
\(=\dfrac{37}{30}\)
Tính giá trị của biểu thức:
a) \(32-6.\left(8-2^3\right)+18;\)
b) \(\left(3.5-9\right)^3.\left(1+2.3\right)^2+4^2.\)
a) 32 - 6 . (8 - 23) + 18 = 32 - 6 . (8 - 8) + 18
= 32 - 6 . 0 + 18 = 32 + 18 = 50
b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42
= (15 - 9)3 . (1 + 6)2 + 42
= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600
a) 32 - 6 . (8 - 23) + 18 = 32 - 6 . (8 - 8) + 18
= 32 - 6 . 0 + 18 = 32 + 18 = 50
b) (3 . 5 - 9)3 . (1 + 2 . 3)2 + 42
= (15 - 9)3 . (1 + 6)2 + 42
= 63 . 72 + 42 = 216 . 49 + 16 = 10 584 + 16 = 10 600
Cho 2 biểu thức: \(A=\dfrac{5}{2m+1}\) và \(B=\dfrac{4}{2m-1}\)
Hãy tìm các giá trị của m để hai biểu thức ấy có giá trị thỏa mãn hệ thức:
a, 2A+3B=0 b, AB= A+B
Giải
a, 2A+3B=0 <=> \(\dfrac{10}{2m+1}+\dfrac{12}{2m-1}=0\)
<=>10(2m-1)+ 12(2m+1) =0
<=> 44m +2 =0
<=> m=-1/22
b, AB= A+B <=> \(\dfrac{20}{\left(2m-1\right)\left(2m+1\right)}=\dfrac{5}{2m+1}+\dfrac{4}{2m-1}\)
<=> 20 = 5(2m -1) + 4(2m+1)
<=> 20 = 18m - 1
<=> m=7/6