Biểu thức x . x 3 . x 5 6 , x > 0 viết dưới dạng lũy thừa với số mũ hữu tỷ là
A. x 5 3
B. x 5 2
C. x 7 3
D. x 2 3
6. Cho biểu thức :1 x 2 x 3 x 4 x 5 x ... ... x 48 x 49 - 1 x 3 x 5 x 7 x 9 x ... ... x 47 x 49 Biểu thức trên có chữ số tận cùng bằng………………………
Xét tích 1 x 2 x 3 x 4 x 5 x ... x 48 x 49 có chứa thừa số 10 tận cùng là 0
Mà 0 nhân với số nào cũng bằng 0
Nên tích 1 x 2 x 3 x 4 x 5 x ... x 48 x 49 có tận cùng là 0
Xét tích 1 x 3 x 5 x 7 x 9 x ... ... x 47 x 49 có chứa thừa số 5
Mà 5 nhân với số lẻ nào tận cùng cũng là 5
Vậy hiệu 1 x 2 x 3 x 4 x 5 x ... ... x 48 x 49 - 1 x 3 x 5 x 7 x 9 x ... ... x 47 x 49 có chữ số tận cùng là 10 - 5 = 5
# Aeri #
1 x 2 x 3 x 4 x…x 48 x 49 -1 x 3 x 5 x 7 x…x 47 x 49
= ( 1 x 3 x 5 x 7 x ... x 49 ) x ( 2 x 4 x 6 x 8 x ... x 48 ) - 1 x 3 x 5 x 7 x ... x 49
= ( 1 x 3 x 5 x 7 x ... x 49 ) x ( 2 x 4 x 6 x 8 x ... x 48 - 1 )
= ........5 x ( .......0 - 1 )
= .........5 x .......9
= ......5 có chữ số tận cùng là 5
Tính giá trị biểu thức:
1 x 2 x 3 x 4 x 5 x 6 + 2 x 4 + 3 x 3 + 5 x 6 x 7 x 8 - 3 x 4 x 5 x 6 - 2 x 4 x 5
TOÁN BÀI TẬP VỀ NHÀ LỚP VIP 28/6/2023
1.Tính giá trị biểu thức
a]2/5 x 25/29 3/5 x 25/29 b]5/2 x 3/7-3/14:6/7
c]15/4:5/12-6/5:11/15
2.Tính giá trị biểu thức
a]2/3+20/21 x 3/2 x 7/5 b]5/17 x 21/32 x 47/24 x 0
c]11/3 x 26/7-26/7 x 8/3
3.Tìm x
a]25/8:x=5/16 b]x+7/15=6/15 c]x:28/49=7/12
4.Tìm x
a]6 x x=5/8:3/4 b]x
a) (2/5 x 25/29) + (3/5 x 25/29)
= (50/145) + (75/145)
= 125/145
b) (5/2 x 3/7) - (3/14 : 6/7)
= 15/14 - (3/14 x 7/6)
= 15/14 - 1/2
= (30/28) - (14/28)
= 16/28
= 4/7
c) (15/4 : 5/12) - (6/5 : 11/15)
= (15/4 x 12/5) - (6/5 x 15/11)
= 180/20 - 90/55
= 9 - 18/11
= (99/11) - (18/11)
= 81/11
= 7 4/11
a) (2/3) + (20/21 x 3/2 x 7/5)
= 2/3 + (60/210)
= 2/3 + 2/7
= (14/21) + (6/21)
= 20/21
b) (5/17 x 21/32 x 47/24 x 0)
= 0
c) (11/3 x 26/7) - (26/7 x 8/3)
= (286/21) - (208/21)
= 78/21
= 3 9/21
= 3 3/7
a) (25/8) : x = 5/16
=> (25/8) x (16/5) = x
=> 4 = x
b) x + (7/15) = 6/15
=> x = (6/15) - (7/15)
=> x = -1/15
c) x : (28/49) = 7/12
=> x x (49/28) = 7/12
=> x = (7/12) x (28/49)
=> x = 1/2
a) 6 x x = (5/8) : (3/4)
=> 6x = (5/8) x (4/3)
=> 6x = 20/24
=> 6x = 5/6
=> x = (5/6) / 6
=> x = 5/36
câu,b,không,đủ,thông,tin,nhan,bạn.
Bài 3: Cho x + 1/x =3. Tính gt của biểu thức M = x5 + 1/x5
Bài 4: Tính giá trị của biểu thức P= x(x+5) +y(y+5) +2(xy-3)/ x(x+6)+y(y-6)+2xy tại x + y = 2016
Cho biểu thức: A = x+5/2x – x-6/5-x – 2x^2-2x-50/2x^2-10x
a) Rút gọn biểu thức A
b) Tìm x biết A = 1/3
a: \(A=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)
b: Để A=1/3 thì x-5/2x=1/3
=>3x-15=2x
=>x=15
Cho các biểu thức A= \(\dfrac{X+2}{X+3}-\dfrac{5}{X^2+X-6}+\dfrac{1}{2-X}\)
a) Tìm điều kiện xác định của A
b) Rút gọn biểu thức A.
c) Tính giá trị của biểu thức A khi x = 3
a) ĐKXĐ: \(x\ne-3,x\ne2\)
b) \(A=\dfrac{\left(x-2\right)\left(x+2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)
c) \(A=\dfrac{x-4}{x-2}=\dfrac{3-4}{3-2}=-1\)
Tìm giá trị của x sao cho
a) giá trị biểu thức 2x - 2/3 không nhỏ hơn giá trị của biểu thức x + 3/6
b) giá trị của biểu thức (x+3)² nhỏ hơn giá trị của biểu thức (x-2)²
c) giá trị của biểu thức 2x - 3/3 - x ko lớn hơn giá trị của biểu thức 2x - 3/5
d) giá trị của biểu thức 2x - 3/5 không lớn hơn giá trị của biểu thức x + 2/2
a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)
=>4x-4>=x+3
=>3x>=7
=>x>=7/3
b: (x+3)^2<(x-2)^2
=>6x+9<4x-4
=>2x<-13
=>x<-13/2
c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)
=>2/3x-1-x<=2/5x-3/5
=>-11/15x<2/5
=>x>-6/11
Cho các biểu thức A=\(\dfrac{\sqrt{x}}{1+\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)(X≥0,X≠9,x≠4)
a.tính giá trị biểu thứC a khi x=3-2\(\sqrt{2}\)
b.rút gọn biểu thứ B
c.tìm giá trị nhỏ nhất của biểu thứ P=A:B
\(a.x=3-2\sqrt{2}\\ \Rightarrow\sqrt{x}=\sqrt{3-2\sqrt{2}}\\ =\sqrt{2-2\sqrt{2}+1}\\ =\sqrt{\left(\sqrt{2}-1\right)^2}\\ =\left|\sqrt{2}-1\right|\\ =\sqrt{2}-1\left(vì\sqrt{2}>1\right)\)
Thay \(\sqrt{x}=\sqrt{2}-1\) vào A ta được
\(A=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{\sqrt{2}-2}{2}\)
\(b.B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\\ B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{10-5\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-3\sqrt{x}-\sqrt{x}+3-x+4-10+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{1}{\sqrt{x}-2}\)
\(c,P=A:B\\ P=\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}\\ P=\dfrac{x-2\sqrt{x}}{1+\sqrt{x}}\)
\(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\)
Có: \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}+1\ge1\left(I\right)\)
Lại có: \(\sqrt{x}\ge0\)
\(\Rightarrow-\sqrt{x}\le0\\ \Rightarrow-\sqrt{x}+2\le2\)
mà \(-\sqrt{x}\le0\)
\(\Rightarrow-\sqrt{x}\left(-\sqrt{x}+2\right)\ge2\)
Kết hợp với \(\left(I\right)\) \(\Rightarrow\) \(P=\dfrac{-\sqrt{x}\left(-\sqrt{x}+2\right)}{\sqrt{x}+1}\ge2\)
Vậy gtnn của P = \(2\) khi \(x=10+4\sqrt{6}\)
a: Khi \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\) thì
\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}}{1+\sqrt{\left(\sqrt{2}-1\right)^2}}=\dfrac{\sqrt{2}-1}{1+\sqrt{2}-1}=\dfrac{\sqrt{2}-1}{\sqrt{2}}=\dfrac{2-\sqrt{2}}{2}\)
b: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}-\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-x+4+5\sqrt{x}-10}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}-2}\)
tính giá trị biểu thức sau :
1 x 3 x 5 + 2 x 6 x 10 + 3 x 9 x 15/3 x 5 x 12 + 6 x 10 x 24 + 9 x 15 x 36
1 x 3 x 5 + 2 x 6 x 10 + 3 x 9 x 15/3 x 5 x 12 + 6 x 10 x 24 + 9 x 15 x 36 = 15 + 120 + 8100 + 1440 + 4860 = 14535
\(\frac{1\times3\times5+2\times6\times10+3\times9\times15}{3\times5\times12+6\times10\times24+9\times15\times36}\)
\(=\frac{1\times3\times5\times\left(1+2^3+3^3\right)}{3\times5\times12\times\left(1+2^3+3^3\right)}\)\(=\frac{1}{12}\)
Câu 1.
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)
1) Tính giá trị của biểu thức N khi x = 16,
2) Rút gọn biểu thức M.
3) Tìm tất cả các số tự nhiên x để M < N.
Câu 2.
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.
Câu 3.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)
2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.
a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.
b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.
Câu 4.
Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.
1) Chứng minh tứ giác AMBH nội tiếp.
2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.
3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.
Câu 5.
Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)
Câu 2:
2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
Câu 2 :
Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 )
Vận tốc của người đi nhanh : x + 4 (km/h)
Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)
Khi đó :
\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)
\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)
\(\Leftrightarrow3x^2+12x-144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)
Câu 1:
1) Thay x=16 vào N, ta được:
\(N=\dfrac{2\cdot\sqrt{16}+1}{3-\sqrt{16}}=\dfrac{2\cdot4+1}{3-4}=\dfrac{9}{-1}=-9\)
Vậy: Khi x=16 thì N=-9