Tính cos 20 0 + cos 40 0 + cos 60 0 + . . . + cos 160 0 + cos 180 0 ta được
A. S=-1
B. S=1
C. S=-2
D. S=2
tính giá trị biểu thức :
P= cos 200 +cos 400 +cos 600 +......+ cos 1800
\(P=cos20+cos160+cos40+cos140+...+cos80+cos100+cos180\)
\(=2cos90.cos70+2cos90.cos50+...+2cos90.cos10+cos180\)
\(=cos90\left(2cos70+2cos50+...+2cos10\right)+cos180\)
\(=cos180=-1\) (do \(cos90=0\))
cos 0 + cos 20 + cos 40 +...+ cos 160 + cos 180
=cos0+cos180+cos20+cos160+cos40+cos140+cos60+cos120+cos80+cos100
=0+0+...+0
=0
`cos 0^o +cos 20^o +cos 40^o +...+cos 160^o +cos 180^o`
`=(cos 0^o +cos 180^o)+(cos 20^o +cos 160^o)+....+(cos 80^o +cos 100^o)`
`=(cos 0^o -cos 0^o)+(cos 20^o -cos 20^o)+....+(cos 80^o -cos 80^o)`
`=0`
Áp dụng: `cos \alpha = -cos(180^o -\alpha)=-cos(\pi - \alpha)`.
Tính P = \(\cos^20^0+\cos^21^0+\cos^22^0+...+\cos^2180^0\)
\(A = {\cos ^2}{38^0} + {\cos ^2}{52^0} + {\cos ^2}{60^0}\)
Tính \( B = cos^21^0 +cos^22^0+...+cos^288^0+cos^289^0\)
Ta có \(\cos1^o=\sin89^o\)
\(\cos2^o=sin88^o\)
................
\(\cos44^o=\sin46^o\)
\(\cos45^o=\frac{\sqrt{2}}{2}\)
\(\Rightarrow\cos^21^o=\sin^289^o\)
\(\cos^22^o=\sin^288^o\)
....................................
\(\cos^244^o=\sin^246^o\)
\(\cos^245^o=\frac{2}{4}=\frac{1}{2}\)
Khi đó \(B=\sin^289^o+\sin^288^o+...+\sin^246^o+\cos^245^o+\cos^246^o+...+\cos^289^o\)
\(=\left(\sin^289^o+\cos^289^o\right)+\left(\sin^288^o+\cos^288^o\right)+...+\left(\sin^246^o+\cos^246^o\right)+\cos^245^o\)
\(=1+1+...+1+\frac{1}{2}\)(44 số 1)
\(=44+\frac{1}{2}=\frac{89}{2}=44,5\)
Tính giá trị biểu thức:
\(A=\cos^21^0+\cos^22^0+\cos^23^0+...+\cos^287^0+\cos^288^0+\cos^289^0-\frac{1}{2}\)
Mọi người giúp mình với ạ...
\(\cos^21^o+\cos^289^o=\cos^21^o+\cos^2\left(90^o-1^o\right)=\cos^21^o+\sin^21^o=1\)
\(\cos^22^o+\cos^288^o=\cos^22^o+\cos^2\left(90^o-2^o\right)=\cos^22^o+\sin^22^o=1\)
.......
\(\cos^244^o+\cos^246^o=\cos^244^o+\cos^2\left(90^o-44^o\right)=\cos^244^o+\sin^244^o=1\)
\(\cos^245^o=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)
=> \(A=1.44+\frac{1}{2}-\frac{1}{2}=44\)
CM: \(\dfrac{\sin\left(60^0-x\right).\cos\left(30^0-x\right)+\cos\left(60^0-x\right).\sin\left(30^0-x\right)}{\sin4x}=\dfrac{1+\tan^2x}{4\tan x}\)
\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)
\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)
\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)
Tính giá trị biểu thức P = 4(cos2 10 + cos2 20 + cos2 30+ ...+cos2 870+ cos2 880 + cos2 890)
\(P=4\left[\left(cos^21^0+cos^289^0\right)+\left(cos^22^0+cos^288^0\right)+...+\left(cos^244^0+cos^246^0\right)+cos^245^0\right]\)
\(=4\left[\left(cos^21^0+sin^21^0\right)+\left(cos^22^0+sin^22^0\right)+...+\left(cos^244^0+sin^244^0\right)+cos^245^0\right]\)
\(=4\left(1+1+...+1+\frac{\sqrt{2}}{2}\right)\)
Tính giá trị đúng của các biểu thức sau (không dùng máy tính cầm tay):
a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)
b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)
c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)
d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)
e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)
a) \(A = \cos {0^o} + \cos {40^o} + \cos {120^o} + \cos {140^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\cos {0^o} = 1;\;\cos {120^o} = - \frac{1}{2}\)
Lại có: \(\cos {140^o} = - \cos \left( {{{180}^o} - {{40}^o}} \right) = - \cos {40^o}\)
\(\begin{array}{l} \Rightarrow A = 1 + \cos {40^o} + \left( { - \frac{1}{2}} \right) - \cos {40^o}\\ \Leftrightarrow A = \frac{1}{2}.\end{array}\)
b) \(B = \sin {5^o} + \sin {150^o} - \sin {175^o} + \sin {180^o}\)
Tra bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\(\sin {150^o} = \frac{1}{2};\;\sin {180^o} = 0\)
Lại có: \(\sin {175^o} = \sin \left( {{{180}^o} - {{175}^o}} \right) = \sin {5^o}\)
\(\begin{array}{l} \Rightarrow B = \sin {5^o} + \frac{1}{2} - \sin {5^o} + 0\\ \Leftrightarrow B = \frac{1}{2}.\end{array}\)
c) \(C = \cos {15^o} + \cos {35^o} - \sin {75^o} - \sin {55^o}\)
Ta có: \(\sin {75^o} = \cos\left( {{{90}^o} - {{75}^o}} \right) = \cos {15^o}\); \(\sin {55^o} = \cos\left( {{{90}^o} - {{55}^o}} \right) = \cos {35^o}\)
\(\begin{array}{l} \Rightarrow C = \cos {15^o} + \cos {35^o} - \cos {15^o} - \cos {35^o}\\ \Leftrightarrow C = 0.\end{array}\)
d) \(D = \tan {25^o}.\tan {45^o}.\tan {115^o}\)
Ta có: \(\tan {115^o} = - \tan \left( {{{180}^o} - {{115}^o}} \right) = - \tan {65^o}\)
Mà: \(\tan {65^o} = \cot \left( {{{90}^o} - {{65}^o}} \right) = \cot {25^o}\)
\(\begin{array}{l} \Rightarrow D = \tan {25^o}.\tan {45^o}.(-\cot {25^o})\\ \Leftrightarrow D =- \tan {45^o} = -1\end{array}\)
e) \(E = \cot {10^o}.\cot {30^o}.\cot {100^o}\)
Ta có: \(\cot {100^o} = - \cot \left( {{{180}^o} - {{100}^o}} \right) = - \cot {80^o}\)
Mà: \(\cot {80^o} = \tan \left( {{{90}^o} - {{80}^o}} \right) = \tan {10^o}\Rightarrow \cot {100^o} =- \tan {10^o}\)
\(\begin{array}{l} \Rightarrow E = \cot {10^o}.\cot {30^o}.(-\tan {10^o})\\ \Leftrightarrow E = -\cot {30^o} =- \sqrt 3 .\end{array}\)
Tính: cos2250 + cos2350 + cos2430 + cos2650