Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 18:52

1: \(-1< =cosx< =1\)

=>\(-3< =3\cdot cosx< =3\)

=>\(y\in\left[-3;3\right]\)

2:

TXĐ là D=R

3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)

\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)

4:

\(L=lim\left(3n^2+5n-3\right)\)

\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)

5:

\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)

\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)

YangSu
22 tháng 10 2023 lúc 18:59

\(1,y=3cosx\)

\(+TXD\) \(D=R\)

Có \(-1\le cosx\le1\)

\(\Leftrightarrow-3\le3cosx\le3\)

Vậy có tập giá trị \(T=\left[-3;3\right]\)

\(2,y=cosx\)

\(TXD\) \(D=R\)

\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))

\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)

\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)

\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)

Linh Trương
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:54

1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\) 

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)

2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)

vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0

3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)

\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)

4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)

 

minh phong vu
Xem chi tiết
minh phong vu
Xem chi tiết
Nguyễn Linh Chi
1 tháng 4 2020 lúc 16:50

lim ( x ----> 0 ) \(\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)

= lim ( x----> 0 ) \(\frac{\sqrt[m]{1+ax}-1+1-\sqrt[n]{1+bx}}{x}\)

= lim ( x ---> 0 ) \(\frac{\sqrt[m]{1+ax}-1}{x}\)- lim ( x ---> 0 ) \(\frac{\sqrt[n]{1+bx}-1}{x}\)

= lim ( x ----> 0 ) \(\frac{ax}{x\left(\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1\right)}\)

- lim ( x ----> 0 ) \(\frac{bx}{x\left(\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1\right)}\)

= lim ( x -----> 0 ) \(\frac{a}{\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)

- lim ( x ---> 0 )  \(\frac{b}{\sqrt[n]{\left(1+bx\right)^{n-1}}+\sqrt[n]{\left(1+bx\right)^{n-2}}+...+1}\)

\(\frac{a}{m}-\frac{b}{n}\)

Khách vãng lai đã xóa
minh phong vu
1 tháng 4 2020 lúc 20:52

cảm ơn bạn

Khách vãng lai đã xóa
minh phong vu
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:07

a) Với x bất kì và \(h = x - {x_0}\), ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_0} + h}} - {e^{{x_0}}}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_o}}}\left( {{e^h} - 1} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = {e^{{x_0}}}\end{array}\)

Vậy hàm số \(y = {e^x}\)  có đạo hàm là hàm số \(y' = {e^x}\)

b) Ta có \({a^x} = {e^{x\ln a}}\,\)nên \(\left( {{a^x}} \right)' = \left( {{e^{x\ln a}}} \right)' = \left( {x\ln a} \right)'.{e^{x\ln a}} = {e^{x\ln a}}\ln a = {a^x}\ln a\)

Nguyễn Ngọc Lê Uyên
Xem chi tiết
Lương Ngọc Thuyết
12 tháng 5 2016 lúc 15:48

\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)

Ta có : \(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x=\lim\limits_{x\rightarrow+\infty}\left(1-\frac{1}{1+x}\right)^x\)

Đặt \(-\frac{1}{1+x}=\frac{1}{t}\Rightarrow\begin{cases}x=-\left(1+t\right)\\x\rightarrow+\infty;t\rightarrow-\infty\end{cases}\)

\(\Rightarrow L=\lim\limits_{t\rightarrow-\infty}\left(1+\frac{1}{t}\right)^{-\left(1+t\right)}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)^{1+t}}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)\left(1+\frac{1}{t}\right)^t}=\frac{1}{1.e}=\frac{1}{e}\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:07

a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)

b) Với \({x_0}\) bất kì, ta có:

\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)

Vậy hàm số y = sin  có đạo hàm là hàm số \(y' = \cos x\)

Quỳnh Anh
Xem chi tiết
Khôi Bùi
25 tháng 4 2022 lúc 22:54

\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}=\lim\limits_{x\rightarrow a}\left(x^2+a^2\right)=2a^2\)

Lê Trung Dũng
Xem chi tiết
Trần Phan Ngọc Hân
12 tháng 5 2016 lúc 16:46

\(L=\lim\limits_{x\rightarrow0}\frac{e^x-1}{\sqrt{x+1}-1}=\lim\limits_{x\rightarrow0}\frac{\left(e^x-1\right)\left(\sqrt{x+1}-1\right)}{x}=\lim\limits_{x\rightarrow0}\left[\frac{e^x-1}{x}.\left(\sqrt{x+1}-1\right)\right]=1.0=0\)