Cho các số dương a, b, c thỏa mãn 2 a = 6 b = 12 c .Khi đó biểu thức T = b c - b a có giá trị là
A. 3 2
B. 1
C. 2
D. 1 2
cho a, b, c là các số dương thỏa mãn a+b+c>=6. Tìm gtnn của biểu thức sau: P = 2a+4b+6c+4/a+12/b+20/c
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho các số dương a, b, c thỏa mãn 2 a = 6 b = 12 c . Khi đó biểu thức T = b c - b a có giá trị là
A. 3 2
B. 1
C. 2
D. 1 2
Chọn đáp án B.
DISCOVERY
Một cách tổng quát chúng ta có các kết quả sau:
1) Cho các số thực dương m, n, p khác 1 và thỏa mãn m.p = n α
Nếu tồn tại các số thực a, b, c thỏa mãn hệ thức
2) Cho các số thực dương m, n, p khác 1 và thỏa mãn
Nếu tồn tại các số thực a, b, c thỏa mãn hệ thức
Tìm giá trị nhỏ nhất của biểu thức P = a / bc + 2b / ca + 5c / ab , trong đó a,b,c là các số thực dương thỏa mãn a^2 + b^2 + c^2 = 6
cho các số dương x,y,z thỏa mãn b√a+c√b+a√c=3.tìm gtln của biểu thức 9/a^2+b^2+c^2
Ta có:
\(9=\left(b\sqrt{a}+b\sqrt{b}+a\sqrt{c}\right)^2\le\left(a^2+b^2+c^2\right)\left(a+b+c\right)\le\left(a^2+b^2+c^2\right)\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\Leftrightarrow81\le3\left(a^2+b^2+c^2\right)^3\Leftrightarrow27\le\left(a^2+b^2+c^2\right)^3\)
\(\Leftrightarrow3\le a^2+b^2+c^2\Rightarrow\dfrac{9}{a^2+b^2+c^2}\le\dfrac{9}{3}=3\)
Dấu "=" xảy ra khi a=b=c=1
Câu 1: Cho a,b là các số dương thỏa mãn a+b=2016. Tìm giá trị lớn nhất của biểu thức P=ab
a.10082 b,2016 c.20162 d.4.20162
Câu 2: Cho a,b là các số dương thỏa mãn ab=16 và đặt P=\(\dfrac{a+b}{2}\). Khẳng định nào sau đây là đúng
a.P≥4 b.P≥8 c.\(\dfrac{17}{2}\) d.5
Câu 3: Cho a, b là các số dương. Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a}{b}+\dfrac{b}{a}\)
a.2 b.0 c.1 d.-2
Câu 4: Tìm mệnh đề đúng
a. a2-a+1>0,∀a b. a2+2a+1>0,∀a c.a2-a≥0, ∀a d.a2-2a-1≥0,∀a
giúp em với ạ
c1:áp dụng bđt AM-GM:
\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)
=> đáp án A
c2: tương tự c1 . đáp án b
3.
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Đáp án A
4.
\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)
Đáp án A
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
Ta có \(12=a+b+2ab\le a+b+\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow\left(a+b\right)^2+2\left(a+b\right)-24\ge0\Leftrightarrow\left(a+b+6\right)\left(a+b-4\right)\ge0\Leftrightarrow a+b\ge4\) (Do a + b + 6 > 0)
Dấu "=" xảy ra khi a = b = 2.
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
bạn kiểm tra lại xem có sai đề không
Cho a,b là các số dương thỏa mãn a+b+c=1.Tìm giá trị nhỏ nhất của biểu thức A= a*b+2*b*c+3*c
Cho 3 số dương a, b, c thỏa mãn a + b + c = 6. Tính GTLN của biểu thức
\(P=\dfrac{ab}{6-c}+\dfrac{bc}{6-a}+\dfrac{ca}{6-b}\)
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)