Tính:
a) ( 1 + i ) 2006 ;
b) ( 1 - i ) 2006 .
Tính:
a) (2^2007 + 2^2006) : 2^2006 b) (3^2011 + 3^2010) : 3^2010
c) (5^2001 + 5^2000) : 5^2000 d) (4^2001 + 4^2000) : 4^2000
e) (6^2005 + 6^2004) : 6^2004 f) (7^2011 + 7^2010) : 7^2010
\(a,\left(2^{2007}+2^{2006}\right):2^{2006}=2^{2007}:2^{2006}+2^{2006}:2^{2006}=2+1=3\\ b,\left(3^{2011}+3^{2010}\right):3^{2010}=3^{2011}:3^{2010}+3^{2010}:3^{2010}=3+1=4\\ c,\left(5^{2001}+5^{2000}\right):5^{2000}=5^{2001}:5^{2000}+5^{2000}:5^{2000}=5+1=6\)
Tương tự là d,e,f và kết quả đúng lần lượt là 5,7,8 nha
Tính:
A.2006:340=.........
B.12 giờ 43 phút-7 giờ 17 phút=.............
C.6 phút 15 giây * 4=......
D.21 phút 40 giây : 4=...........
59/10
5h26p
24h60p
27p19 giây
59/10
5h26p
24h60p
27p19 giây
H= giờ
p= phút
Bài 2. Tính:
a) A = 1 – 2 – 3 + 4 + 5 – 6 – 7 + 8 + ... + 2001 – 2002 – 2003 + 2004.
b) B = 1 + 2 – 3 – 4 + 5 + 6 – 7 – 8 + 9 + ... + 2002 – 2003 – 2004 + 2005 + 2006.Mik sẽ tick cho bạn trả lời nha
Tính:A: 1+1/3+1/6+1/10+...+1/171+1/190.
B: S=1/2+1/2^2+1/2^3+...+1/2^20.
C: 1+2+2^2+2^3+...+2^2006+2^2007.
A= 1 +\(\frac{1}{3}\)+\(\frac{1}{6}\)+ .....+ \(\frac{1}{171}\)+\(\frac{1}{190}\)
A= 1 +2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+....+\(\frac{1}{342}\)+\(\frac{1}{380}\))
A=1+ 2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+....+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\))
A=1+2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{18}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{20}\))
A=1 +2.(\(\frac{1}{2}\)-\(\frac{1}{20}\))
A=1+2.\(\frac{9}{20}\)=1+\(\frac{9}{10}\)=\(\frac{19}{10}\)
B=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+....+\(\frac{1}{2^{20}}\)
2B= 1 +\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+......+\(\frac{1}{2^{21}}\)
2B-B= 1-\(\frac{1}{2^{21}}\)
B=1-\(\frac{1}{2^{21}}\)
C= 1 +2+ \(2^2\)+\(2^3\)+.......+\(2^{2007}\)
2C=2 + \(2^2\)+\(2^3\)+.....+\(2^{2007}\)+ \(2^{2008}\)
2C-C= \(2^{2008}\)-1
C=\(2^{2008}\)-1
Tính:A: 1+1/3+1/6+1/10+...+1/171+1/190.
B: S=1/2+1/2^2+1/2^3+...+1/2^20.
C: 1+2+2^2+2^3+...+2^2006+2^2007.
\(A=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{380}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{19.20}\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(=1+2\times\frac{9}{20}\)
\(=1+\frac{9}{10}\)
\(=\frac{19}{10}\)
b)\(2S=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)
\(2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)
\(S=1-\frac{1}{2^{20}}\)
c)đặt A=1+2+2^2+2^3+...+2^2006+2^2007.
2A=2(1+2+2^2+2^3+...+2^2006+2^2007)
2A=2+2^2+2^3+...+2^2008
2A-A=(2+2^2+2^3+...+2^2008)-(1+2+2^2+2^3+...+2^2006+2^2007)
A=2^2008-1
TÍNH NHANH:
C= \(\dfrac{\dfrac{2006}{2}+\dfrac{2006}{3}+\dfrac{2006}{4} +....+\dfrac{2006}{2007}}{\dfrac{2006}{1}+\dfrac{2005}{2}+\dfrac{2004}{3}+....+\dfrac{1}{2006}}\)
\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)
\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)
So sánh
bài 1 :A= 2006/2007-2007/2008+2008/2009-2009/2010
B= -1/2006*2007-1/2008*2009
bài 2: C= 2006/2007+2007/2008+2008/2009+2009/2006 với 4
tính:A=\(\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\cdot\cdot\left(1-\frac{1}{1+2+3+...+2006}\right)\)
Mọi người giúp mk nha!
ai lam đúng và nhanh nhất mk sẽ tick cho(giải chi tiết)
THANKS.
\(a_{n-1}=\frac{1}{1+2+3+...+n}=\frac{2}{n\left(n+1\right)}\)=>\(1-a_{n-1}=1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(A=\left(1-\frac{2}{2.3}\right)\left(1-\frac{2}{3.4}\right)........\left(1-\frac{2}{2006.2007}\right)\)
\(=\left(\frac{1.4}{2.3}\right)\left(\frac{2.5}{3.4}\right)\left(\frac{3.6}{4.5}\right)........\left(\frac{2005.2008}{2006.2007}\right)\)\(=\frac{\left(1.2.3......2005\right)\left(4.5.6.....2008\right)}{\left(2.3.4.....2006\right)\left(3.4.5....2007\right)}=\frac{1.2008}{2006.3}=\frac{1004}{3009}\)
tính nhanh: 2006^2+1/2006^3-2005
2006^3+1/2006^2+2007
Giúp mình với nha gấp lắm rồi