A= 1 +\(\frac{1}{3}\)+\(\frac{1}{6}\)+ .....+ \(\frac{1}{171}\)+\(\frac{1}{190}\)
A= 1 +2.(\(\frac{1}{6}\)+\(\frac{1}{12}\)+....+\(\frac{1}{342}\)+\(\frac{1}{380}\))
A=1+ 2.(\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+....+\(\frac{1}{18.19}\)+\(\frac{1}{19.20}\))
A=1+2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{18}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{20}\))
A=1 +2.(\(\frac{1}{2}\)-\(\frac{1}{20}\))
A=1+2.\(\frac{9}{20}\)=1+\(\frac{9}{10}\)=\(\frac{19}{10}\)
B=\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+....+\(\frac{1}{2^{20}}\)
2B= 1 +\(\frac{1}{2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{2^3}\)+......+\(\frac{1}{2^{21}}\)
2B-B= 1-\(\frac{1}{2^{21}}\)
B=1-\(\frac{1}{2^{21}}\)
C= 1 +2+ \(2^2\)+\(2^3\)+.......+\(2^{2007}\)
2C=2 + \(2^2\)+\(2^3\)+.....+\(2^{2007}\)+ \(2^{2008}\)
2C-C= \(2^{2008}\)-1
C=\(2^{2008}\)-1