Cho biết lim x → 1 2 1 + a x 2 - b x - 2 4 x 3 - 3 x + 1 = c với a , b , c ∈ R . Tập nghiệm của phương trình a x 4 - 2 b x 2 + c + 2 = 0 trên R có số phần tử là
A. 1
B. 3
C. 0
D. 2
Cho biết \(\lim\limits_{x\rightarrow0}\dfrac{sinax}{ax}=1\left(a\ne0\right)\). Tìm \(\lim\limits_{x\rightarrow0}\dfrac{1-cos2017x}{x^2}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sin ax}{ax}=1\Rightarrow\sin ax\sim ax\Leftrightarrow\sin^2ax\sim\left(ax\right)^2\)
\(1-\cos x=1-\cos2.\dfrac{x}{2}=2\sin^2\dfrac{x}{2}\sim2.\left(\dfrac{x}{2}\right)^2=\dfrac{x^2}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{1-\cos2017x}{x^2}\)
Ta co khi \(x\rightarrow0:1-\cos2017x\sim\dfrac{\left(2017x\right)^2}{2}=\dfrac{2017^2x^2}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\dfrac{1-\cos2017x}{x^2}=\lim\limits_{x\rightarrow0}\dfrac{2017^2x^2}{2x^2}=\dfrac{2017^2}{2}\)
Tìm giới hạn hàm số Lim x->4 1-x/(x-4)^2 Lim x->3+ 2x-1/x-3 Lim x->2+ -2x+1/x+2 Lim x->1- 3x-1/x+1
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
Bài 1
a. \(\lim\limits_{x\rightarrow+\infty}\frac{1+2\sqrt{x}-x}{x+3}\) b. \(\lim\limits_{x\rightarrow+\infty}\frac{x^3+3x-1}{x^2\sqrt{x}+x}\) c. \(\lim\limits_{x\rightarrow-\infty}\frac{x+2\sqrt{1-x}}{1-x}\)
Bài 2: Tính các giới hạn sau biết \(\lim\limits_{x\rightarrow0}\frac{\sin x}{x}=1\)
a. \(\lim\limits_{x\rightarrow0}\frac{1-\cos x}{1-\cos3x}\) b. \(\lim\limits_{x\rightarrow0}\frac{\cot x-\sin x}{x^3}\) c. \(\lim\limits_{x\rightarrow\infty}\frac{x.\sin x}{2x^2}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)
Bài 2:
\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)
\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)
\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)
Mà \(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)
Mà \(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)
Cho lim x → ∞ f x + 2 = 1 .Tính lim x → ∞ f x
A. lim x → ∞ f x = 3
B. lim x → ∞ f x = -1
C. lim x → ∞ f x = -3
D. lim x → ∞ f x = 1
Tìm các giới hạn sau
1. lim ( x đến 1) \(\dfrac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}\)
2. lim ( x đến 1-) \(\dfrac{2x-3}{1-x}\)
3. lim ( x đến 2+) \(\dfrac{x-3}{2-x}\)
4. lim ( x đến +-∞) \(\dfrac{-8x^3+9x^2+x-1}{5x^2+1}\)
5. lim ( x đến -∞) \(\dfrac{\sqrt{x^2}-x-1+3x}{2x+7}\)
1/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7-9\right)\left(2+\sqrt{x+3}\right)}{\left(4-x-3\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(2+\sqrt{x+3}\right)}{\left(x-1\right)\left(-\sqrt{2x+7}-3\right)}=\dfrac{2.4}{-6}=-\dfrac{4}{3}\)
2/ \(=\lim\limits_{x\rightarrow1^-}\dfrac{2.1-3}{1-1}=-\infty\)
3/ \(=\lim\limits_{x\rightarrow2^+}\dfrac{3-x}{x-2}=+\infty\)
4/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-\dfrac{8x^3}{x^2}+\dfrac{9x^2}{x^2}+\dfrac{x}{x^2}-\dfrac{1}{x^2}}{\dfrac{5x^2}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-8x}{5}=\pm\infty\)
5/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}}+\dfrac{2x}{x}-\dfrac{1}{x}}{\dfrac{2x}{x}+\dfrac{7}{x}}=\dfrac{1}{2}\)
cho biết \(\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{a\left|x\right|+2}=\dfrac{2}{3}\). tính giá trị a?
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{4x^2-x+5}}{-ax+2}=\lim\limits_{x\rightarrow-\infty}\dfrac{\dfrac{1}{x}+\sqrt{4-\dfrac{1}{x}+\dfrac{5}{x^2}}}{-a+\dfrac{2}{x}}=\dfrac{2}{-a}=\dfrac{2}{3}\)
\(\Rightarrow a=-3\)
\(\lim\limits_{x\rightarrow0^-}\left(\dfrac{1}{x^2}-\dfrac{2}{x^3}\right)\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^3-x^2}}{\sqrt{x-1}+1-x}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{1}{x^3-1}-\dfrac{1}{x-1}\)
\(\lim\limits_{x\rightarrow-\infty}\left(x-\sqrt[3]{1-x^3}\right)\)
1/ \(\lim\limits_{x\rightarrow0^-}\left(\dfrac{x-2}{x^3}\right)=\lim\limits_{x\rightarrow0^-}\dfrac{2-x}{-x^3}=\dfrac{2}{0}=+\infty\)
2/ \(\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^3-x^2\right)^{\dfrac{1}{2}}}{\left(x-1\right)^{\dfrac{1}{2}}+1-x}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^3-x^2\right)^{-\dfrac{1}{2}}.\left(3x^2-2x\right)}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}-1}=0\)
3/ \(\lim\limits_{x\rightarrow1^+}\dfrac{1-\left(x^2+x+1\right)}{x^3-1}=\dfrac{1-3}{0}=-\infty\)
4/ \(\lim\limits_{x\rightarrow-\infty}\left(-\infty-\sqrt[3]{1+\infty}\right)=-\left(\infty+\infty\right)=-\infty?\) Cái này ko chắc :v
Cho biết \(\mathop {\lim }\limits_{x \to 0} \frac{{{e^x} - 1}}{x} = 1\) và \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \left( {1 + x} \right)}}{x} = 1\). Dùng định nghĩa tính đạo hàm của các hàm số:
a) \(y = {e^x}\);
b) \(y = \ln x\).
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
1) lim\(\dfrac{3x-5}{\left(x-2\right)^2}\)(x-->2)
2) lim\(\dfrac{2x-7}{x-1}\)(x-->1-)
3) lim\(\dfrac{2x-7}{x-1}\)(x-->1+)
1.
Do \(\lim\limits_{x\rightarrow2}\left(3x-5\right)=1>0\)
\(\lim\limits_{x\rightarrow2}\left(x-2\right)^2=0\)
\(\left(x-2\right)^2>0;\forall x\ne2\)
\(\Rightarrow\lim\limits_{x\rightarrow2}\dfrac{3x-5}{\left(x-2\right)^2}=+\infty\)
2.
\(\lim\limits_{x\rightarrow1^-}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^-}\left(x-1\right)=0\)
\(x-1< 0;\forall x< 1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^-}\dfrac{2x-7}{x-1}=+\infty\)
3.
\(\lim\limits_{x\rightarrow1^+}\left(2x-7\right)=-5< 0\)
\(\lim\limits_{x\rightarrow1^+}\left(x-1\right)=0\)
\(x-1>0;\forall x>1\)
\(\Rightarrow\lim\limits_{x\rightarrow1^+}\dfrac{2x-7}{x-1}=-\infty\)
a. Lim x->3 x^3-27/3x^2-5x-2 b. Lim x->2 căn bậc hai (x+2)-2/4x^2-3x-2 c. Lim x->1 1-x^2/x^2-5x+4 d. Lim x->1 căn bậc ba (x+7)/x^3+27+1
a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)
b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)
c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)
d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe