Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Thúy Hằng
Xem chi tiết
Phan uyển nhi
Xem chi tiết
Hồng Phúc
20 tháng 12 2020 lúc 18:13

ĐK: \(x\ge\dfrac{1}{2}\)

\(pt\Leftrightarrow\sqrt{x}-1+\sqrt{2x-1}-1+x^2+x-2=0\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}+1}+\dfrac{2x-2}{\sqrt{2x-1}+1}+\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2\right)\left(x-1\right)=0\)

Vì \(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{\sqrt{2x-1}+1}+x+2>0\) nên \(x-1=0\Leftrightarrow x=1\left(tm\right)\)

kkkkkkkkkkkk
Xem chi tiết
$Mr.VôDanh$
9 tháng 7 2019 lúc 18:52

\(\frac{x+\sqrt{x}}{\sqrt{x}}+\frac{x-4}{\sqrt{x}+2}\)

= \(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

= \(\left(\sqrt{x}+1\right)+\sqrt{x}-2\)

= \(2\sqrt{x}-1\)

Tran Quang Minh
Xem chi tiết
Đặng Minh Triều
17 tháng 6 2016 lúc 12:02

bạn tách từng câu ra mik suy nghĩ từng câu

hưngchibi
Xem chi tiết
Binh Le
Xem chi tiết
hàn hàn
Xem chi tiết
YangSu
3 tháng 7 2023 lúc 11:27

\(a,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=-1\)

\(b,\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(dk:x\ne\pm\sqrt{2}\right)\\ =\dfrac{x^2+2\sqrt{2}x+\sqrt{2^2}}{x^2-\sqrt{2^2}}\\ =\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\\ =\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\)

\(c,\sqrt{9x^2}-2x\left(dk:x< 0\right)\\ =\sqrt{3^2}.\sqrt{x^2}-2x\\ =3\left|x\right|-2x\\ =-3x-2x\\ =-5x\)

\(d,\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{\sqrt{2^2}+2.3\sqrt{2}+3^2}-3+\sqrt{2}\\ =\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}\\ =\sqrt{2}+3-3+\sqrt{2}\\ =2\sqrt{2}\)

\(e,\dfrac{x^2-5}{x+\sqrt{5}}\left(dk:x\ne-\sqrt{5}\right)\\ =\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\\ =x-\sqrt{5}\)

Võ Thị Kim Dung
Xem chi tiết
Mo Nguyễn Văn
17 tháng 9 2019 lúc 13:59

\(x=1\)

Hiền Thương
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2022 lúc 13:22

a: Đặt \(x^2-4=a\)

Pt sẽ là \(a=3\sqrt{xa}\)

\(\Rightarrow a^2=9xa\)

\(\Leftrightarrow a\left(a-9x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)

hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)

d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)

Pt sẽ là 2a+b=ab+2

=>(b-2)(1-a)=0

=>b=2 và 1-a

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)