x2+2x-y2-2y
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3x2 + 5x - 3xy- 5y d) x2 - 25 + y2 + 2xy
e) x3 - 11 x2 + 30x f) x2 + 3x - 18
phân tích các đa thức thành nhân tử
a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)
d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
e) \(=x\left(x^2-11x+30\right)\)
f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)
a, -x2 + 2x + 3
b, x2 - 2x + 4y2 - 4y + 8 c, -x2 - y2 + xy + 2x + 2y + 4 d, x2 + 5y2 - 4xy - 2y + 2015 e, 2x2 + y2 + 6x + 2y + 2xy + 2018A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
Hãy cho biết phương trình nào trong các phương trình sau đây là phương trình đường tròn:
2x2 + y2 – 8x + 2y – 1 = 0;
x2 + y2 + 2x – 4y – 4 = 0;
x2 + y2 – 2x – 6y + 20 = 0;
x2 + y2 + 6x + 2y + 10 = 0.
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
Vị trí tương đối của hai mặt cầu: x 2 + y 2 + z 2 + 2x - 2y - 2z - 7 = 0 và x 2 + y 2 + z 2 + 2x + 2y + 4z + 5 = 0 là:
A. ở ngoài nhau
B. tiếp xúc
C. cắt nhau
D. chứa nhau
Đáp án C
Mặt cầu: x 2 + y 2 + z 2 + 2x - 2y – 2z – 7 = 0 có tâm I(-1; 1;1) và
Mặt cầu: x 2 + y 2 + z 2 + 2x + 2y + 4z + 5= 0 có tâm I’( -1; -1; -2) và R’ = 1
![]()
Do đó, hai mặt cầu này cắt nhau.
4/ Ph©n tÝch c¸c ®a thøc sau thµnh nh©n tö:
a) x2 - y2 - 2x + 2y b)2x + 2y - x2 - xy
c) 3a2 - 6ab + 3b2 - 12c2 d)x2 - 25 + y2 + 2xy
e) a2 + 2ab + b2 - ac - bc f)x2 - 2x - 4y2 - 4y g) x2y - x3 - 9y + 9x h)x2(x-1) + 16(1- x)
n) 81x2 - 6yz - 9y2 - z2 m)xz-yz-x2+2xy-y2 p) x2 + 8x + 15 k) x2 - x - 12
l) 81x2 + 4
a,x2-y2-2x+2y
= (x+y)(x-y) - 2(x-y)
= (x-y)(x+y-2)
b,2x+2y-x2-xy
= 2(x+y) - x(x+y)
= (x+y)(2-x)
c,3a2-6ab+3b2-12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a-b)2 - 4c2)
= 3(a-b-2c)(a-b+2c)
d,x2-25+y2+2xy
= (x+y)2 - 25
= (x+y+5)(x+y-5)
e) a2+2ab+b2-ac-bc
= (a+b)2-c(a+b)
= (a+b)( a+b-c)
f) x2-2x-4x2-4y
= -3x2-2x-4y
= -(3x2+2x+4y)
g)x2y-x3-9y+9x
= x2(y-x)-9(y-x)
= (y-x)(x2-9)
h) x2(x-1)+16(1-x)
= x2(x-1)-16(x-1)
= (x-1)(x2-16)
= (x-1)(x-4)(x+4)
n) 81x2-6yz-9y2-z2
= (9x)2-[(3y)2+6yz+z2]
=(9x)2-(3y+z)2
=(9x+3y+z)(9x-3y-z)
m) xz- yz-x2+2xy-y2
= z(x-y)-(x2-2xy+y2)
= z(x-y)-(x-y)2
= (x-y)(z-x+y)
p) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x+3) + 5(x+3)
= (x+3)(x+5)
k) x2 - x - 12
= x2 + 3x - 4x - 12
= x(x+3) - 4(x+3)
= (x+3)(x-4)
A) 5x3 - 10x2 y2
B) x2 - y2 + 2x - 2y
\(a,=5x^2\left(x-2y^2\right)\\ b,=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)=\left(x-y\right)\left(x+y+2\right)\)
a) \(=5x^2\left(x-2y^2\right)\)
b) \(=\left(x-y\right)\left(x+y\right)+2\left(x-y\right)=\left(x-y\right)\left(x+y+2\right)\)
Tìm giá trị nhỏ nhất:
a/ P=x2+y2-6x-2y+17
b/ Q=x2+xy+y2-3x-3y+999
c/ R=2x2+2xy+y2-2x+2y+15
d/ S=x2+26y2-10xy+14x-76y+59
e/ T=x2-4xy+5y2+10x-22y+28
Giúp mình với nha!
a: \(P=x^2+y^2-6x-2y+17\)
\(=x^2-6x+9+y^2-2y+1+7\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+7\ge7\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-1=0
=>x=3 và y=1
b: \(Q=x^2+xy+y^2-3x-3y+999\)
\(=x^2+x\left(y-3\right)+y^2-3y+999\)
\(=x^2+2\cdot x\cdot\left(\frac12y-\frac32\right)+\left(\frac12y-\frac32\right)^2+y^2-3y-\left(\frac12y-\frac32\right)^2+999\)
\(=\left(x+\frac12y-\frac32\right)^2+y^2-3y-\left(\frac14y^2-\frac32y+\frac94\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34y^2-\frac32y-\frac94+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y-3\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y^2-2y+1-4\right)+999\)
\(=\left(x+\frac12y-\frac32\right)^2+\frac34\left(y-1\right)^2+996\ge996\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x+\frac12y-\frac32=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=-\frac12y+\frac32=-\frac12+\frac32=\frac22=1\end{cases}\)
c: \(R=2x^2+2xy_{}+y^2-2x+2y+15\)
\(=x^2-4x+4+x^2+2xy+y^2+2x+2y+11\)
\(=\left(x-2\right)^2+x^2+2xy+y^2+2x+2y+1+10\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2+10\ge10\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x-2=0\\ x+y+1=0\end{cases}\Rightarrow\begin{cases}x=2\\ y=-x-1=-2-1=-3\end{cases}\)
d: \(S=x^2+26y^2-10xy+14x-76y+59\)
\(=x^2-10xy+25y^2+14x-70y+y^2-6y+59\)
\(=\left(x-5y\right)^2+14\left(x-5y\right)+49+y^2-6y+9+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-3=0\\ x-5y+7=0\end{cases}\Rightarrow\begin{cases}y=3\\ x=5y-7=5\cdot3-7=15-7=8\end{cases}\)
e: \(T=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+4y^2+10x-20y+y^2-2y+28\)
\(=\left(x-2y\right)^2+10\left(x-2y\right)+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}y-1=0\\ x-2y+5=0\end{cases}\Rightarrow\begin{cases}y=1\\ x=2y-5=2\cdot1-5=2-5=-3\end{cases}\)
phân tích các đa thức sau thành nhân tử
a x2 - y2 -3x + 3y
b 2x + 2y -x2 + y2
c x2 -16 + y2 + 2xy
cứuuu
a) \(x^2-y^2-3x+3y\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-3\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x^2-y^2\right)\)
\(=2\left(x+y\right)-\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(2-x+y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=x^2+y^2+2xy-16\)
\(=\left(x+y\right)^2-16\)
\(=\left(x+y+4\right)\left(x+y-4\right)\)
a) \(x^2-y^2-3x+3y\)
\(=\left(ax+y\right)\left(ax-y\right)-3.\left(x-y\right)\)
b) \(2x+2y-x^2+y^2\)
\(=2\left(x+y\right)-\left(x+y\right)\left(x-y\right)\)
c) \(x^2-16+y^2+2xy\)
\(=\left(x+y\right)\left(x-y\right)+2xy-16\)
Tìm GTNN
A= x2 + y2 – 6x + 4y + 20
B= 9x2 + y2 + 2z2 – 18x + 4z – 6y +30
C= x2 +y2 + z2 – xy – yz – zx + 3
D= 5x2 + 2y2 + 4xy – 2x + 4y + 2021
E= x2 – 2x+ 4y2 + 4y + 2014
F= 5x2 + 5y2 + 8xy + 2y – 2x + 30
K= x2 + 4y2 + z2 – 2x + 12y – 4z +44
Giúp mik vs cần gấp!!!!
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$
$E=x^2-2x+4y^2+4y+2014$
$=(x^2-2x+1)+(4y^2+4y+1)+2012$
$=(x-1)^2+(2y+1)^2+2012$
$\geq 2012$
Vậy $E_{\min}=2012$. Giá trị này đạt tại $x-1=2y+1=0$
$\Leftrightarrow x=1; y=\frac{-1}{2}$
----------------------
$F=5x^2+5y^2+8xy+2y-2x+30$
$=4(x^2+2xy+y^2)+x^2+y^2+2y-2x+30$
$=4(x+y)^2+(x^2-2x+1)+(y^2+2y+1)+28$
$=4(x+y)^2+(x-1)^2+(y+1)^2+28\geq 28$
Vậy $F_{\min}=28$. Giá trị này đạt tại $x+y=x-1=y+1=0$
$\Leftrightarrow x=1; y=-1$