Cho phương trình: x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (m là tham số).
a) Giải phương trình với m= 0.
b) Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn điều kiện:
1 x 1 + 1 x 2 = 4 .
điểm) Cho phương trình 2 2
x m x m m 2 2 2 4 0 với m là tham số.
a) Giải phương trình khi m 2.
b) Tìm m để phương trình có nghiệm phân 1 2 x x , thỏa mãn 1 2 x x 6.
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
Cho phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
a.Giải phương trình với m=-3
b.Tìm m để phương trình (1) có 2 nghiệm thỏa mãn \(x^2_1+x^2_2=10\)
a) Với m = -3 phương trình trở thành
\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)
b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)
Ta có :
\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
Cho phương trình: (m + 1) * x ^ 2 - 2(m - 1) * x + m - 2 = 0 (1)(x l hat a hat a n) a) Giải phương trình (1) khi m = 0 . b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt.
a. Bạn tự giải
b.
Phương trình có 2 nghiệm pb khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+1\right)^2-\left(m+1\right)\left(m-2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m>-1\end{matrix}\right.\) \(\Rightarrow m>-1\) (1)
c.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne2\), khi đó:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{4}\Rightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{4}\)
\(\Rightarrow4\left(x_1+x_2\right)=7x_1x_2\)
\(\Rightarrow\dfrac{8\left(m-1\right)}{m+1}=\dfrac{7\left(m-2\right)}{m+1}\)
\(\Rightarrow8\left(m-1\right)=7\left(m-2\right)\)
\(\Rightarrow m=-6< -1\) (ktm (1))
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
cho phương trình x bình phương cộng 2 x m + 1 x + m bình phương = 0 a giải phương trình với m = 5 B tìm m để phương trình 1 có 2 nghiệm phân biệt trong đó có 1 nghiệm bằng -2
a: x^2+2xm+m^2=0
Khi m=5 thì pt sẽ là x^2+10x+25=0
=>x=-5
b: Thay x=-2 vào pt, ta được:
4-4m+m^2=0
=>m=2
Cho phương trình: xᒾ + 2(m − 1)x+mᒾ - 3 = 0 (1) (m là tham số) a) Giải phương trình (1) với m=2 b) Tìm m để phương trình (1) có hai nghiệm X₁; x₂ thỏa mãn x₁ + x₂ =52
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
Cho phương trình \(x^2-2\left(m-1\right)x+m^2-3m=0\left(1\right)\) (x là ẩn số)
a) Giải phương trình (1) khi m = 5
b) Tìm tất cả giá trị của m để phương trình (1) có 2 nghiệm
a, Thay vào ta được
\(x^2-8x+10=0\)
\(\Delta'=16-10=6>0\)
Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)
b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)
Để pt có 2 nghiệm khi m >= -1
a)Thay m=5 ta có:
\(x^2-2\left(5-1\right)x+5^2-15=0\\ =>x^2-8x+10=0\)
Công thức nghiệm của pt bâc 2 ta có: b2-4ac=(-8)2-40=24>0
=>Phương trình có 2 nghiệm phân biệt:
xong r tính ra x1 và x2 :v