cho \(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3e}\) va a+b+c+d \(\ne\) 0
c/m a=b=c=d
giải hẳn ra
Các số a, , b , c , d thỏa mãn điều kiện :\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\) và a+ b + c + d \(\ne\)0 .
Chứng minh a = b =c =d
Ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)
\(=\frac{1}{3}\)
Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)
Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)
Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)
Vậy a = b = c = d ( Đpcm )
cho tỉ lệ thức ;\(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng ;
a/\(\frac{a+b}{b}=\frac{c+d}{d}\)
b/\(\frac{a}{a+b}=\frac{c}{c+d}\left(a+b#0;c+d#0\right)\)
c/\(\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3b}\left(2b+3d\ne0;2b-3d\ne0\right)\)
CMR a=b=c=d
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
và a+b+c+d khác 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\cdot\left(b+c+d+a\right)}=\frac{1}{3}\)
Do đó :
\(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}.\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{a}{b}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow a=b\)
\(\frac{b}{3c}=\frac{1}{3}\Rightarrow\frac{b}{c}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{b}{c}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow b=c\)
\(\frac{c}{3d}=\frac{1}{3}\Rightarrow\frac{c}{d}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{c}{d}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow c=d\)
\(\frac{d}{3a}=\frac{1}{3}\Rightarrow\frac{d}{a}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{d}{a}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow d=a\)
\(\Rightarrow a=b=c=d\)
1 a) 2a=3b:5b=7c và 3a +5c-7b=30
b)\(\frac{x-1}{2}=\frac{x+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
c)3x=4y=6z và x-3y+2z=70
d)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=20
2 cho \(\frac{a}{b}=\frac{c}{d}\)và a;b;c;d\(\ne\)0
a)\(\frac{a}{a-b}\frac{c}{d}\)
b)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
g)\(\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3d}\)
h)\(\frac{2a+3b}{2a-3d}=\frac{2c+3d}{2c-3d}\)
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) \(\left(a,b,c,d\ne0;a+b+c+d\ne0\right)\)
Tính: \(M=\frac{3a-2b}{c+d}+\frac{3b-2c}{d+a}+\frac{3c-2d}{a+b}+\frac{3d-2a}{b+c}\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)
=>a=b=c=d
=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)
Ta có:a/b=b/c=c/d=d/a
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1
=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)
Thay vào M sau đó tìm được M=2
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) ; a+b+c+d khác 0
Tính: \(Q=\frac{a-3b}{c+d}+\frac{b-3c}{a+d}+\frac{c-3d}{a+b}+\frac{d-3a}{b+c}\)
Kết quả là -4 đúng ko?Mk chỉ muốn kiểm tra mk làm đúng hay ko thôi!!! :)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a/b = 1 => a = b
b/c = 1 => b = c
c/d = 1 => c = d
d/a = 1 => d = a
=> a = b = c = d
=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
ST Mk làm cách khác nhung cam on ban
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,
Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana
Help me!
Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.
Cho \(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
Chứng minh a = b = c = d
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}==\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)
suy ra:
\(\frac{a}{3b}=\frac{1}{3}\Rightarrow a=\frac{1}{3}.3b=b\)
\(\frac{b}{3c}=\frac{1}{3}\Rightarrow b=\frac{1}{3}.3c=c\)
\(\frac{c}{3d}=\frac{1}{3}\Rightarrow c=\frac{1}{3}.3d=d\)
=>a=b=c=d
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(b+c+d+a\right)}=\frac{1}{3}\)
\(\Rightarrow a=\frac{1}{3}.3b=b\) (1)
\(b=\frac{1}{3}.3c=c\) (2)
\(c=\frac{1}{3}.3d=d\) (3)
\(d=\frac{1}{3}.3a=a\) (4)
Từ (1), (2), (3), (4) suy ra: a = b = c = d (đpcm)