Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
truong nhat  linh
Xem chi tiết
Myy_Yukru
29 tháng 6 2018 lúc 10:57

Ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)

\(=\frac{a+b+c+d}{3b+3c+3d+3a}\)

\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}\)

\(=\frac{1}{3}\)

Với \(\frac{a}{3b}=\frac{1}{3}=>a=\frac{1}{3}.3b=>a=b\)

Với \(\frac{b}{3c}=\frac{1}{3}=>b=\frac{1}{3}.3c=>b=c\)

Với \(\frac{c}{3d}=\frac{1}{3}=>c=\frac{1}{3}.3d=>c=d\)

Vậy a = b = c = d ( Đpcm )

jackminubr
19 tháng 3 2020 lúc 20:38

cảm ơn bạn

Khách vãng lai đã xóa
Phạm Thùy Linh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Huỳnh Phan Yến Nhi
31 tháng 12 2016 lúc 22:19

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

     \(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\cdot\left(b+c+d+a\right)}=\frac{1}{3}\)

Do đó :

       \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}.\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{a}{b}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow a=b\)

       \(\frac{b}{3c}=\frac{1}{3}\Rightarrow\frac{b}{c}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{b}{c}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow b=c\)

       \(\frac{c}{3d}=\frac{1}{3}\Rightarrow\frac{c}{d}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{c}{d}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow c=d\)

       \(\frac{d}{3a}=\frac{1}{3}\Rightarrow\frac{d}{a}\cdot\frac{1}{3}=\frac{1}{3}\Rightarrow\frac{d}{a}=\frac{1}{3}:\frac{1}{3}=1\Rightarrow d=a\)

\(\Rightarrow a=b=c=d\)

Saiyan Super
Xem chi tiết
Tran Thai Han Thuyen
Xem chi tiết
Kimi No Nawa
Xem chi tiết
ST
21 tháng 1 2018 lúc 20:00

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

ĐẶng Trung Kiên
23 tháng 1 2018 lúc 20:07

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

believe in yourself
Xem chi tiết
ST
15 tháng 10 2017 lúc 10:27

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c

c/d = 1 => c = d

d/a = 1 => d = a

=> a = b = c = d

=> \(Q=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

không có tên
15 tháng 10 2017 lúc 9:53

dung roi do  bn\(GOOD\)

believe in yourself
15 tháng 10 2017 lúc 13:41

ST Mk làm cách khác nhung cam on ban

Y
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 16:16

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

pro
14 tháng 5 2021 lúc 19:47

Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.

Trần Thanh Dung
Xem chi tiết
Minh Triều
26 tháng 7 2015 lúc 15:47

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}==\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3.\left(a+b+c+d\right)}=\frac{1}{3}\)

suy ra:

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow a=\frac{1}{3}.3b=b\)

\(\frac{b}{3c}=\frac{1}{3}\Rightarrow b=\frac{1}{3}.3c=c\)

\(\frac{c}{3d}=\frac{1}{3}\Rightarrow c=\frac{1}{3}.3d=d\)

=>a=b=c=d

hong pham
26 tháng 7 2015 lúc 15:50

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(b+c+d+a\right)}=\frac{1}{3}\)

\(\Rightarrow a=\frac{1}{3}.3b=b\)  (1)

      \(b=\frac{1}{3}.3c=c\)   (2)

      \(c=\frac{1}{3}.3d=d\)   (3)

      \(d=\frac{1}{3}.3a=a\)   (4)

Từ (1), (2), (3), (4) suy ra: a = b = c = d   (đpcm)