Rút gọn các biểu thức sau:
a) A = − 3 + 2 + 5 x khi x ≤ 0 ;
b) B = − 3 x 2 − 8 x 2 + x − 2 khi x ≥ 2 ;
c) C = x − 7 + 2 x − 3
Rút gọn các biểu thức đại số sau:
a) \(6(y - x) - 2(x - y)\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
a) Cách 1:
\(6(y - x) - 2(x - y)\)
\( = 6y - 6x - 2x + 2y\)
\( = 8y - 8x\)
Cách 2:
\(6(y - x) - 2(x - y)\\= 6(y-x)+2(y-x)\\=(6+2).(y-x)\\=8.(y-x)\\=8y-8x\)
b) \(3{x^2} + x - 4x - 5{x^2}\)
\( = (3{x^2} - 5{x^2}) + (x - 4x)\)
\( = - 2{x^2} - 3x\)
Bài 1: Rút gọn các biểu thức sau:
a) (x-5)(2x+1)-2x(x-3)
b) (2+3x)(2-3x)+(3x+4)^2
\(a,\left(x-5\right)\left(2x+1\right)-2x\left(x-3\right)\\ =x.2x-5.2x+x-5-2x.x-2x.\left(-3\right)\\ =2x^2-10x+x-5-2x^2+6x\\ =2x^2-2x^2-10x+x+6x-5\\ =-3x-5\)
\(b,\left(2+3x\right)\left(2-3x\right)+\left(3x+4\right)^2\\ =\left[2^2-\left(3x\right)^2\right]+\left[\left(3x\right)^2+2.3x.4+4^2\right]\\=4-9x^2+\left(9x^2+24x+16\right)\\ =24x+20\)
Rút gọn các biểu thức sau:
a) (2x-1)2+(x+3)2-5.(x-7).(x+7)
b) (x-2).(x2+2x+4)-(25+x3)
`a)(2x-1)^2+(x+3)^2-5(x-7)(x+7)`
`=4x^2-4x+1+x^2+6x+9-5(x^2-49)`
`=5x^2-5x^2-4x+6x+1+9+245`
`=2x+255`
`b)(x-2)(x^2+2x+4)-(25+x^3)`
`=x^3-8-x^3-25=-33`
Lời giải:
a.
$(2x-1)^2+(x+3)^2-5(x-7)(x+7)$
$=4x^2-4x+1+(x^2+6x+9)-5(x^2-49)$
$=5x^2+2x+10-(5x^2-245)=2x+255$
b.
$(x-2)(x^2+2x+4)-(25+x^3)=(x^3-2^3)-(25+x^3)$
$=-8-25=-33$
a: \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)\)
\(=4x^2-4x+1+x^2+6x+9-5x^2+245\)
\(=2x+255\)
b: \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x^3+25\right)\)
\(=x^3-8-x^3-25\)
=-33
Rút gọn các biểu thức sau:
a) √ 3 +√ 8-2√ 15
b) √ x-1-2√x-2
a: =căn 3+căn 5-căn 3=căn5
b: \(=\sqrt{x-2-2\sqrt{x-2}+1}=\sqrt{\left(\sqrt{x-2}-1\right)^2}\)
\(=\left|\sqrt{x-2}-1\right|\)
Rút gọn các biểu thức sau:
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
a) 2x(x+3) – 3x2(x+2) + x(3x2 + 4x – 6)
= (2x . x + 2x . 3) – (3x2 . x + 3x2 . 2) + (x . 3x2 + x . 4x – x . 6)
= 2x2 + 6x – (3x3 + 6x2) + (3x3 + 4x2 - 6x)
= 2x2 + 6x – 3x3 – 6x2 + 3x3 + 4x2 - 6x
= (– 3x3 + 3x3 ) + (2x2 - 6x2 + 4x2 ) + (6x – 6x)
= 0 + 0 + 0
= 0
b) 3x(2x2 – x) – 2x2(3x+1) + 5(x2 – 1)
= [3x . 2x2 + 3x . (-x)] – (2x2 . 3x + 2x2 . 1) + [5x2 + 5 . (-1)]
= 6x3 – 3x2 – (6x3 +2x2) + 5x2 – 5
= 6x3 – 3x2 – 6x3 - 2x2 + 5x2 – 5
= (6x3 – 6x3 ) + (-3x2 – 2x2 + 5x2) – 5
= 0 + 0 – 5
= - 5
Rút gọn các biểu thức sau:
a. (x+5)2-4x(2x+3)2-(2x-1)(x+3)(x-3)
b. -2x(3x+2)(3x-2)+5(x+2)2-(x-1)(2x-1)(2x+1)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
1. Rút gọn các biểu thức sau:
A= 1 - 2 + 3 - 4 + 5 - 6 + ... + 2021 - 2022 + 2023
A=(-1)+(-1)+...+(-1)+2023
=2023-1011
=1012
Rút gọn các biểu thức sau:
a,\(A=5-2x-|x-2|\)
b,\(B=|4-3x|-3x+2\)
Giup mk vs ạ ai nhanh mk tick :>
bỏ dấu giá trị tuyệt đối rồi rút gọn các biểu thức sau:a,|2x-4|+|x-3|;b, |x-5|+|x+6|
a. \(\left|2x-4\right|+\left|x-3\right|\)
Với \(x< 2\), biểu thức trở thành
\(-\left(2x-4\right)-\left(x-3\right)\)
\(=-2x+4-x+3\)
\(=-3x+7\)
Với \(2\le x< 3\), biểu thức trở thành
\(\left(2x-4\right)-\left(x-3\right)\)
\(=2x-4-x+3\)
\(=x-1\)
Với \(x\ge3\), biểu thức trở thành
\(\left(2x-4\right)+\left(x-3\right)\)
\(=2x-4+x-3\)
\(=3x-7\)
b. \(\left|x-5\right|+\left|x+6\right|\)
Với \(x< -6\), biểu thức trở thành
\(-\left(x-5\right)-\left(x+6\right)\)
\(=-x+5-x-6\)
\(=-2x-1\)
Với \(-6\le x< 5\), biểu thức trở thành
\(-\left(x-5\right)+\left(x+6\right)\)
\(=-x+5+x+6\)
\(=11\)
Với \(x\ge5\), biểu thức trở thành
\(\left(x-5\right)+\left(x+6\right)\)
\(=x-5+x+6\)
\(=2x+1\)
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\) b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)