Phương trình m 2 - m x + m - 3 = 0 là phương trình bậc nhất khi và chỉ khi
A. m ≠ 0.
B. m ≠ 1.
C. m ≠ 0 hoặc m ≠ 1.
D. m ≠ 1 và m ≠ 0.
Tìm m để :
a. Phương trình \(x^2-\left(2m+1\right)x+m^2-3=0\) có nghiệm kép
b. Phương trình \(x^2-3mx+m-2=0\) vô nghiệm
c. Phương trình \(x^2-2\left(m-1\right)x+m^2=0\) có nghiệm
a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)
=>4m=-13
hay m=-13/4
c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)
=>-8m>=-4
hay m<=1/2
bài 9 các cặp phương trình sau có tương đương hay không?
d, x+2=0 và \(\dfrac{x}{x+2}=0\)
bài 8 cho phương trình (m\(^2\)-9)x-3=m. Giải phương trình trong các trường hợp sau:
a,m=2 b,m=3 c,m=-3
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
1)Xác định m và n để các phương trình sau đây là phương trình bậc hai
a) (m-2).x^3+3.(n^2-4n+m).x^2-4x+7=0
b) (m^2-1).x^3-(m^2-4m+3).x^2-3x+2=0
2) Cho các phương trình sau. Gọi x1 là nghiệm cho trước hãy định m để phương trình có nghiệm x1 và tính nghiệm còn lại
a) x^2-2mx+m^2-m-1 =0 (x1=1)
b) (m-1)x^2+(2m-2).x+m+3 =0 (x1=0)
c) (m^2-1).x^2+ (1-2m).x+2m-3 = 0 (x1=-1)
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
Cho 2 phương trình: (1). x² - 3x + 2m + 3 = 0 và (2). x² - 4x + m - 1 = 0
Tìm m để phương trình (2) là phương trình hệ quả của phương trình (1).
\(\text{Δ}_1=\left(-3\right)^2-4\cdot1\cdot\left(2m+3\right)\)
\(=9-8m-12\)
\(=-8m-3\)
\(\text{Δ}_2=\left(-4\right)^2-4\cdot1\cdot\left(m-1\right)\)
\(=16-4m+4\)
\(=-4m+20\)
Để (2) là phương trình hệ quả của (1) thì -8m-3=-4m+20
\(\Leftrightarrow-4m=23\)
hay \(m=-\dfrac{23}{4}\)
Cho phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
a.Giải phương trình với m=-3
b.Tìm m để phương trình (1) có 2 nghiệm thỏa mãn \(x^2_1+x^2_2=10\)
a) Với m = -3 phương trình trở thành
\(x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{0;-8\right\}\)
b. Xét phương trình \(x^2-2\left(m-1\right)x-m-3=0\)
\(\Delta'=\left(m-1\right)^2-\left(-m-3\right)=m^2-2m+1+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\)
Suy ra, phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\) (hệ thức Viet)
Ta có :
\(x_1^2+x_2^2=10\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\\ \Leftrightarrow4\left(m-1\right)^2+2\left(m+3\right)=10\\ \Leftrightarrow4m^2-6m=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(m\in\left\{0;\dfrac{3}{2}\right\}\)
Cho phương trình x² – 2(3-m)x-4-m² =0 (x là ẩn, m là tham số) (1). a. Giải phương trình (1) với m = 1. b. Tìm m để phương trình (1) có hai nghiệm phân biệt X₁ , X ₂ thỏa mãn ||x₁ | — |x₂ || =0.
a: Khi m=1 thì (1) sẽ là:
x^2-4x-5=0
=>x=5 hoặc x=-1
tìm m để phương trình x+5-m=0 có nghiệm X=-1
tìm m để phương trình \(^{x^2}\)+2x+3+0 vô nghiệm
mình đang cần