Tìm số tự nhiên n sao cho biểu thức \(\sqrt{5+\sqrt{25-n}}+\sqrt{5-\sqrt{25-n}}\)có giá trị nguyên
tìm tất cả các số tự nhiên n sao cho biểu thức :
\(\sqrt{\frac{49}{2}+\sqrt{\frac{2401}{4}-n}}+\sqrt{\frac{49}{2}-\sqrt{\frac{2401}{4}-n}}\)
có giá trị nguyên
New (cách mới) : Đặt \(x=\frac{49-\sqrt{2401-4n}}{2}\) là số chính phương.
Mà \(\frac{49-\sqrt{2401-4n}}{2}\le\frac{49}{2}\), các số chính phương nhỏ hơn 49/2 là 0; 1; 4; 9; 16
+ Nếu x= 16 -> \(49-\sqrt{2401-4n}=\)32 => \(\sqrt{2401-4n}=\)17 (loại)
+ Nếu x= 9 -> \(49-\sqrt{2401-4n}=\)18 => \(\sqrt{2401-4n}=\)31 (loại)
+ Nếu x= 4 -> \(49-\sqrt{2401-4n}=\)8 => \(\sqrt{2401-4n}=\)41 (loại)
+ Nếu x= 1 -> \(49-\sqrt{2401-4n}=\)2 => \(\sqrt{2401-4n}=\)47 (loại)
+ Nếu x= 0 -> \(49-\sqrt{2401-4n}=\)0 => \(\sqrt{2401-4n}=\)49 => 2041 - 4n = 492 = 2041
=> 4n = 0 => n =0
Thay n=0 vào biểu thức được kết quả là 7 nên n=0 để biểu thức có giá trị nguyên.
\(\sqrt{\frac{49+\sqrt{2401-4n}}{2}}+\sqrt{\frac{49-\sqrt{2401-4n}}{2}}\)
ĐK: 2401 - 4n ≥ 0 => n ≤ 600
Đặt x = \(\sqrt{2401-4n}\)
Để biểu thức có giá trị nguyên thì 2401-4n là số chính phương; (49+x)/2 và (49-x)/2 là số chính phương
=>(492 - x2)/4 là số chính phương
=> (2401 - x2)/4 = (2401-2401+4n)/4 = n là số chính phương
Ta có: n=k2 (k≥0)
=> 492 - (2k)2 = (49-2k)(49+2k) là số chính phương.
Thay k từ 0 đến 24 (nếu k>24 thì 49-2k<0) chỉ có k=0 thỏa mãn để (49-2k)(49+2k) là số chính phương. => n =0
Vậy n =0 để biểu thức có giá trị nguyên (=7)
----
Tới bước cuối ko nghĩ ra đc nữa nên mò :3
Tìm số tự nhiên n sao cho \(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) có giá trị nguyên
Cho biểu thức
Q=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}-5}\)
a) Tìm điều kiện của x để biểu thức có nghĩa. Rút gọn Q
b) tìm x để Q=\(\dfrac{-3}{7}\)
c)tìm x nguyên để phân thức Q nhân giá trị nguyên
cho biểu thức q=\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}-5}\)
a) tìm điều kiện của x để biểu thức có nghĩa. rút gọn q
b) tìm x để q=\(\dfrac{-3}{7}\)
c)tìm x nguyên để phân thức q nhân giá trị nguyên
a: ĐKXĐ: x>=0; x<>25
Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Q=-3/7
=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)
=>7căn x-35=-3căn x-15
=>10căn x=20
=>x=4
c: Q nguyên
=>căn x+5-10 chia hết cho căn x+5
=>căn x+5 thuộc {5;10}
=>căn x thuộc {0;5}
Kết hợp ĐKXĐ, ta được: x=0
a) \(Q=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}-\dfrac{5}{\sqrt[]{x}-5}\left(1\right)\)
Q có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow Q=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}-5}-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=1-\dfrac{10\sqrt[]{x}}{x-25}\)
\(\Leftrightarrow Q=\dfrac{x+10\sqrt[]{x}-25}{x-25}\)
\(\Leftrightarrow Q=\dfrac{\left(\sqrt[]{x}-5\right)^2}{\left(\sqrt[]{x}-5\right)\left(\sqrt[]{x}+5\right)}=\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\)
b) \(Q=-\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}=-\dfrac{3}{7}\)
\(\Leftrightarrow7\left(\sqrt[]{x}-5\right)=-3\left(\sqrt[]{x}+5\right)\)
\(\Leftrightarrow7\sqrt[]{x}-35=-3\sqrt[]{x}-15\)
\(\Leftrightarrow10\sqrt[]{x}=20\)
\(\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)
c) \(Q\in Z\Leftrightarrow\dfrac{\sqrt[]{x}-5}{\sqrt[]{x}+5}\in Z\) \(\left(x\in Z^+\right)\)
\(\Leftrightarrow\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}-5-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)
\(\Leftrightarrow\sqrt[]{x}-5-\sqrt[]{x}-5⋮\sqrt[]{x}+5\)
\(\Leftrightarrow-10⋮\sqrt[]{x}+5\)
\(\Leftrightarrow\sqrt[]{x}+5\in U\left(10\right)=\left\{1;2;5;10\right\}\)
\(\Leftrightarrow x\in\left\{0;25\right\}\)
Bài 11. Cho biểu thức M = \(\dfrac{3\sqrt{x}+1}{\sqrt{x}+3}\) với 𝑥 ≥ 0; 𝑥 ≠ 9. Tìm số thực x để M là số nguyên
Bài 12. Cho biểu thức N = \(\dfrac{\sqrt{x}+3}{\sqrt{x}+5}\) với 𝑥 ≥ 0; 𝑥 ≠ 25. Chứng minh rằng không tồn tại giá trị của x để N là số nguyên.
Bài 12:
Để N là số nguyên thì \(\sqrt{x}+3⋮\sqrt{x}+5\)
\(\Leftrightarrow-2⋮\sqrt{x}+5\)
\(\Leftrightarrow\sqrt{x}+5\in\left\{1;-1;2;-2\right\}\)(vô lý
Bài 11:
Để M là số nguyên thì \(3\sqrt{x}+1⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{4;8\right\}\)
\(\Leftrightarrow x\in\left\{1;25\right\}\)
Tìm số nguyên n để các biểu thức dưới đây có giá trị nguyên
a, \(\dfrac{\sqrt{x}-3}{\sqrt{x}-8}\)
b,\(\dfrac{\sqrt{x}+5}{\sqrt{x}-2}\)
\(c,\dfrac{2\sqrt{x}+8}{\sqrt{x}+3}\)
\(a,=\dfrac{\sqrt{x}-8+5}{\sqrt{x}-8}=1+\dfrac{5}{\sqrt{x}-8}\in Z\\ \Leftrightarrow\sqrt{x}-8\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{3;7;9;13\right\}\\ \Leftrightarrow x\in\left\{9;49;81;169\right\}\left(tm\right)\\ b,=\dfrac{\sqrt{x}-2+7}{\sqrt{x}-2}=1+\dfrac{7}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(7\right)=\left\{-1;1;7\right\}\left(\sqrt{x}-2>-2\right)\\ \Leftrightarrow\sqrt{x}\in\left\{1;3;9\right\}\\ \Leftrightarrow x\in\left\{1;9;81\right\}\\ c,=\dfrac{2\left(\sqrt{x}+3\right)+2}{\sqrt{x}+3}=2+\dfrac{2}{\sqrt{x}+3}\in Z\\ \Leftrightarrow\sqrt{x}+3\inƯ\left(2\right)=\varnothing\left(\sqrt{x}+3>3\right)\\ \Leftrightarrow x\in\varnothing\)
Câu 1.
Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\), \(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)
1) Tính giá trị của biểu thức N khi x = 16,
2) Rút gọn biểu thức M.
3) Tìm tất cả các số tự nhiên x để M < N.
Câu 2.
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.
Câu 3.
1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)
2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.
a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.
b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.
Câu 4.
Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.
1) Chứng minh tứ giác AMBH nội tiếp.
2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.
3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.
Câu 5.
Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)
Câu 2:
2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
Câu 2 :
Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 )
Vận tốc của người đi nhanh : x + 4 (km/h)
Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)
Khi đó :
\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)
\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)
\(\Leftrightarrow3x^2+12x-144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)
Câu 1:
1) Thay x=16 vào N, ta được:
\(N=\dfrac{2\cdot\sqrt{16}+1}{3-\sqrt{16}}=\dfrac{2\cdot4+1}{3-4}=\dfrac{9}{-1}=-9\)
Vậy: Khi x=16 thì N=-9
Cho hai biểu thức A = (sqrt(x) + 2)/(sqrt(x) + 3) và B= (sqrt(x))/(sqrt(x) - 2) + 3/(sqrt(x) + 2) + x+4 4-x .voix>=0,x ne4 a) Tính giá trị của biểu thức A tại x = 25 b) Chứng minh rằng B = 5/(sqrt(x) + 2) c) Tìm tất cả các giá trị nguyên của x dễ tích AB > 1
a: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
Khi x=25 thì \(A=\dfrac{5+2}{5+3}=\dfrac{7}{8}\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}+2}+\dfrac{x+4}{4-x}\)
\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}\)
\(=\dfrac{5\sqrt{x}-10}{x-4}=\dfrac{5}{\sqrt{x}+2}\)
c: \(A\cdot B=\dfrac{5}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{5}{\sqrt{x}+3}\)
Để A*B>1 thì \(\dfrac{5}{\sqrt{x}+3}-1>0\)
=>\(\dfrac{5-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(2-\sqrt{x}>0\)
=>căn x<2
=>0<=x<4
Tìm tất cả các số nguyên n sao cho biểu thức \(\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}\) có giá trị nguyên.