Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Ngọc Duyên

Tìm tất cả các số nguyên n sao cho

\(\sqrt{\dfrac{25}{2}+\sqrt{\dfrac{625}{4}-n}}+\sqrt{\dfrac{25}{2}-\sqrt{\dfrac{625}{4}-n}}\)

Nguyễn Thị Ngọc Thơ
27 tháng 12 2018 lúc 22:44

ĐK: \(n\le\dfrac{625}{4}\le156\) (vì \(n\in Z\) )

Đặt \(a=\sqrt{\dfrac{25}{2}+\sqrt{\dfrac{625}{4}-n}}+\sqrt{\dfrac{25}{2}-\sqrt{\dfrac{625}{4}-n}}\) \(\left(a\ge0,a\in Z\right)\)

\(\Rightarrow a^2=25+2\sqrt{\dfrac{625}{4}-\dfrac{625}{4}+n}\)

\(\Rightarrow a^2=25+2\sqrt{n}\) (1)

Để \(a\in Z\Rightarrow a^2\in Z\Rightarrow\sqrt{n}\in Z^+\)

Vì \(2\sqrt{n}⋮2\) mà 25 không chia hết cho 2

\(\Rightarrow a^2\) không chia hết cho 2

\(\Rightarrow\) a không chia hết cho 2

Đặt \(a=2k+1\left(k>0,k\in Z\right)\)

\(\left(1\right)\Rightarrow\left(2k+1\right)^2=25+2\sqrt{n}\)

\(\Rightarrow2\sqrt{n}=4k^2+4k-24\)

\(\Rightarrow\sqrt{n}=2k^2+2k-12\)

Vì \(\sqrt{n}\ge0\Rightarrow2k^2+2k-12\ge0\)

\(\Rightarrow\left(k+3\right)\left(k-2\right)\ge0\)

Vì \(k>0\Rightarrow k\ge2\) (2)

Mặt khác: \(n\le156\Rightarrow\sqrt{n}\le\sqrt{156}\) mà \(\sqrt{n}\in Z\)

\(\Rightarrow\sqrt{n}\le12\Rightarrow2k^2+2k-12\le12\)

\(\Rightarrow\left(k-3\right)\left(k+4\right)\le0\)

Vì \(k>0\Rightarrow0< k\le3\) (3)

Từ (2) và (3)\(\Rightarrow\left[{}\begin{matrix}k=2\\k=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=0\\n=144\end{matrix}\right.\) (t/m)

Vậy n=0, n=144

Lê Thị Ngọc Duyên
27 tháng 12 2018 lúc 22:19

Nguyễn Việt Lâm Uyen Vuuyen Trần Trung Nguyên JakiNatsumi Vương Đại Nguyên bullet sivel Nguyễn Thanh Hằng KHUÊ VŨ @Nk>↑@ mấy best toán chỉ e với


Các câu hỏi tương tự
Lê Ngọc Cương
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Big City Boy
Xem chi tiết
Hương Thanh
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Ma Sói
Xem chi tiết
Đinh Thuận
Xem chi tiết
Đặng Dung
Xem chi tiết
nguyen manh duc
Xem chi tiết