Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ma Sói

Gọi \(S_n=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\) , n là số tự nhiên >0 . Tìm tất cả giá trị của n sao cho \(n\le100\)\(S_n\) có giá trị nguyên

Akai Haruma
4 tháng 8 2018 lúc 18:20

Lời giải:

\(S_n=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+..+\sqrt{n+1}-\sqrt{n}\)

\(=\sqrt{n+1}-1\)

Để \(S_n\in\mathbb{Z}\Rightarrow \sqrt{n+1}-1\in\mathbb{Z}\Rightarrow \sqrt{n+1}\in\mathbb{Z}\)

Đặt \(\sqrt{n+1}=t\in\mathbb{N}>1\) do \(n>0\)

\(\Rightarrow n+1=t^2\Rightarrow t^2\leq 101\) do \(n\leq 100\)

\(\Rightarrow 0< t\leq \sqrt{101}\)

\(t\in\mathbb{N}^*\Rightarrow t\in\left\{1;2;3;4;5;6;7;8;9;10\right\}\)

\(\Rightarrow n=t^2-1\in\left\{3; 8; 15; 24;35;48;63;80;99\right\}\)


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Big City Boy
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Hàn Thiên Băng
Xem chi tiết
KYAN Gaming
Xem chi tiết
Võ Thùy Trang
Xem chi tiết
Đặng Dung
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết