Lời giải:
\(S_n=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}-\sqrt{1})(\sqrt{2}+\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n+1}-\sqrt{n}}{(n+1)-n}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+..+\sqrt{n+1}-\sqrt{n}\)
\(=\sqrt{n+1}-1\)
Để \(S_n\in\mathbb{Z}\Rightarrow \sqrt{n+1}-1\in\mathbb{Z}\Rightarrow \sqrt{n+1}\in\mathbb{Z}\)
Đặt \(\sqrt{n+1}=t\in\mathbb{N}>1\) do \(n>0\)
\(\Rightarrow n+1=t^2\Rightarrow t^2\leq 101\) do \(n\leq 100\)
\(\Rightarrow 0< t\leq \sqrt{101}\)
Mà \(t\in\mathbb{N}^*\Rightarrow t\in\left\{1;2;3;4;5;6;7;8;9;10\right\}\)
\(\Rightarrow n=t^2-1\in\left\{3; 8; 15; 24;35;48;63;80;99\right\}\)