Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hjjkj Fhjgg
Xem chi tiết
Akai Haruma
31 tháng 10 2020 lúc 12:49

Lời giải:
ĐK: $x\geq \frac{-18}{7}$

PT $\Leftrightarrow x^2+3x-4-3(\sqrt{x+3}-2)-(\sqrt{7x+18}-5)=0$

$\Leftrightarrow (x-1)(x+4)-3.\frac{x-1}{\sqrt{x+3}+2}-\frac{7(x-1)}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x-1)\left(x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}\right)=0$

Xét các TH:

Nếu $x-1=0\Rightarrow x=1$ (thỏa mãn)

Nếu $x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow (x+2)+1-\frac{3}{\sqrt{x+3}+2}+1-\frac{7}{\sqrt{7x+18}+5}=0$

$\Leftrightarrow x+2+\frac{\sqrt{x+3}-1}{\sqrt{x+3}+2}+\frac{\sqrt{7x+18}-2}{\sqrt{7x+18}+5}=0$

\(\Leftrightarrow (x+2)+\frac{x+2}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7(x+2)}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}=0\)

\(\Leftrightarrow (x+2)\left( 1+\frac{1}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn dương nên $x+2=0\Leftrightarrow x=-2$

Vậy $x=-2$ hoặc $x=1$

Khách vãng lai đã xóa
Big City Boy
Xem chi tiết
Hoàng Đức Thắng
Xem chi tiết
Nguyễn Huy Tú
19 tháng 2 2022 lúc 17:56

đk -3 =< x =< 10

\(\sqrt{x+3}-2+\sqrt{10-x}-3=x^2-7x+6\)

\(\Leftrightarrow\dfrac{x+3-4}{\sqrt{x+3}+2}+\dfrac{10-x-9}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)

\(\Leftrightarrow\dfrac{x-1}{\sqrt{x+3}+2}+\dfrac{1-x}{\sqrt{10-x}+3}=\left(x-6\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x+3}+2}-\dfrac{1}{\sqrt{10-x}+3}-x+6\ne0\right)=0\Leftrightarrow x=1\)(tm)

Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
27 tháng 9 2021 lúc 15:18

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)

Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)

\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)

PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)

+ Với a=1

\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)

+ Với b=1

\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)

Vậy \(S=\left\{-1\right\}\)

Hung nguyen
27 tháng 9 2021 lúc 15:19

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)

Thì được:

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)

Làm tiếp

Nguyễn Hoàng Minh
27 tháng 9 2021 lúc 15:19

\(ĐK:x\ge-2\)

\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)

Khổng Tử
Xem chi tiết
Hồng Phúc
6 tháng 1 2021 lúc 12:36

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

Phan Nhiêu Thục Nhi
Xem chi tiết
Nguyễn Hoàng Tiến
21 tháng 5 2016 lúc 16:58

i)

\(x^2-x^2\sqrt{2}-2x-2\sqrt{2}x+1+3\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x^2-2x+3\right)=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2+2\sqrt{2}=0\)

\(\left(x-1\right)^2+\sqrt{2}\left(x-1\right)^2=-2\sqrt{2}\)

=> Phương trình vô nghiệm

ii)

Đặt: \(6x^2-7x=a\)

Ta có: \(a^2-2a-3=0\)

\(\left(a-3\right)\left(a+1\right)=0\)

\(\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0\)

\(x=\frac{3}{2};-\frac{1}{3};1;\frac{1}{6}\)

l҉o҉n҉g҉ d҉z҉
21 tháng 5 2016 lúc 17:04

 Phương trình vô nghiệm

ii)

Đặt: $6x^2-7x=a$6x27x=a

Ta có: $a^2-2a-3=0$a22a3=0

$\left(a-3\right)\left(a+1\right)=0$(a3)(a+1)=0

$\left(6x^2-7x-3\right)\left(6x^2-7x+1\right)=0$(6x27x3)(6x27x+1)=0

$

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
phan tuấn anh
Xem chi tiết