Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2020 lúc 20:24

a/ Trừ vế cho vế:

\(2x-2y=y^2-x^2-4y+4x\)

\(\Leftrightarrow x^2-y^2-2x+2y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=2-x\end{matrix}\right.\)

Thế vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}2x=x^2-4x+5\\2x=\left(2-x\right)^2-4\left(2-x\right)+5\end{matrix}\right.\)

Bạn tự giải nốt

Nguyễn Việt Lâm
26 tháng 7 2020 lúc 20:34

b/

Lần lượt cộng trừ vế cho vế ta được:

\(\left\{{}\begin{matrix}x^3+y^3=7\left(x+y\right)\\x^3-y^3=19\left(x-y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2-xy-7\right)=0\\\left(x-y\right)\left(x^2+y^2+xy-19\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\\\left\{{}\begin{matrix}x^2+y^2-xy-7=0\\x^2+y^2+xy-19=0\end{matrix}\right.\end{matrix}\right.\)

Hai trường hợp đầu bạn tự thế vào giải

Trường hợp 3, trừ vế cho vế: \(2xy-12=0\Rightarrow xy=6\Rightarrow y=\frac{6}{x}\)

Thế vào pt đầu: \(x^3=13x-\frac{36}{x}\Leftrightarrow x^4-13x^2+36=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=9\\x^2=4\end{matrix}\right.\)

Lê Quốc Vương
Xem chi tiết
dnxhfcdrja
Xem chi tiết
Trương Tấn Sang
Xem chi tiết
Lizy
Xem chi tiết
FK-HUYTA
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:57

undefined

Hoai Bao Tran
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Trần Quốc Khanh
29 tháng 8 2020 lúc 21:37

.

Minh Tam Nguyen
Xem chi tiết
TFBoys
8 tháng 8 2017 lúc 11:19

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

TFBoys
8 tháng 8 2017 lúc 11:03

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

TFBoys
8 tháng 8 2017 lúc 11:08

2. \(\left\{{}\begin{matrix}\left(xy-x\right)-\left(y-1\right)=6\\\left(yz-y\right)-\left(z-1\right)=12\\\left(zx-z\right)-\left(x-1\right)=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=6\\\left(y-1\right)\left(z-1\right)=12\\\left(z-1\right)\left(x-1\right)=8\end{matrix}\right.\)

Đến đây dễ rồi

Tạ Thúy Hường
Xem chi tiết
Tạ Thúy Hường
3 tháng 1 2018 lúc 23:10

mọi người ơi giúp mình vs mai ktra r