x2-x-2
a. x+1/x-2 - x/x+2 + 8/x2 -4
b. x-3/x+1 - x+2/x-1 + 8x/x2 -1
c. x+2/x2-2x + 2/x2+2x + 3x+2/x2-4
d. 4/x - 12/x2+3x + 5/x+3
a: \(=\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b: \(=\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x-1}\)
c: \(=\dfrac{x+2}{x\left(x-2\right)}+\dfrac{2}{x\left(x+2\right)}+\dfrac{3x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+2x-4+3x+2}{x\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+7x-2}{x\left(x-2\right)\left(x+2\right)}\)
a,
\(\dfrac{x+1}{x-2}-\dfrac{x}{x+2}+\dfrac{8}{x^2-4}\\ =\dfrac{x^2+3x+2-x^2+2x+8}{\left(x-2\right)\left(x+2\right)}=\dfrac{5x+10}{\left(x-2\right)\left(x+2\right)}=\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{5}{x-2}\)
b,
\(\dfrac{x-3}{x+1}-\dfrac{x+2}{x-1}+\dfrac{8x}{x^2-1}\\ =\dfrac{x^2-4x+3-x^2-3x-2+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{1}{x-1}\)
Bài 1:Phân tích đa thức thành nhân tử:
a) x3y+x-y-1
b) x2.(x-2)+4.(2-x)
c) x3-x2-20x
d) (x2+1)2-(x+1)2
e) 6x2-7x+2
f) x4+8x2+12
g) (x3+x+1).(x3+x)-2
h) (x+1).(x+2).(x+3).(x+4)-1
i) -(x2+2)2+4x.(x2+2)-3x2
j) -(x2+2)2+4x.(x2+2).3x2
k) -(x2+2)2+4x.(x2+2)+3x2
l) 81x4+4y4
Giúp với ạa
a) x³y + x - y - 1
= (x³y - y) + (x - 1)
= y(x³ - 1) + (x - 1)
= y(x - 1)(x² + x + 1) + (x - 1)
= (x - 1)[y(x² + x + 1) + 1]
= (x - 1)(x²y + xy + y + 1)
b) x²(x - 2) + 4(2 - x)
= x²(x - 2) - 4(x - 2)
= (x - 2)(x² - 4)
= (x - 2)(x - 2)(x + 2)
= (x - 2)²(x + 2)
c) x³ - x² - 20x
= x(x² - x - 20)
= x(x² + 4x - 5x - 20)
= x[(x² + 4x) - (5x + 20)]
= x[x(x + 4) - 5(x + 4)]
= x(x + 4)(x - 5)
d) (x² + 1)² - (x + 1)²
= (x² + 1 - x - 1)(x² + 1 + x + 1)
= (x² - x)(x² + x + 2)
= x(x - 1)(x² + x + 2)
e) 6x² - 7x + 2
= 6x² - 3x - 4x + 2
= (6x² - 3x) - (4x - 2)
= 3x(2x - 1) - 2(2x - 1)
= (2x - 1)(3x - 2)
f) x⁴ + 8x² + 12
= x⁴ + 2x² + 6x² + 12
= (x⁴ + 2x²) + (6x² + 12)
= x²(x² + 2) + 6(x² + 2)
= (x² + 2)(x² + 6)
g) (x³ + x + 1)(x³ + x) - 2
Đặt u = x³ + x
x³ + x + 1 = u + 1
(u + 1).u - 2
= u² + u - 2
= u² - u + 2u - 2
= (u² - u) + (2u - 2)
= u(u - 1) + 2(u - 1)
= (u - 1)(u + 2)
= (x³ + x - 1)(x³ + x + 2)
= (x³ + x - 1)(x³ + x² - x² - x + 2x + 2)
= (x³ + x - 1)[(x³ + x²) - (x² + x) + (2x + 2)]
= (x³ + x - 1)[x²(x + 1) - x(x + 1) + 2(x + 1)]
= (x³ + x - 1)(x - 1)(x² - x + 2)
h) (x + 1)(x + 2)(x + 3)(x + 4) - 1
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 1
= (x² + 5x + 4)(x² + 5x + 6) - 1 (1)
Đặt u = x² + 5x + 4
u + 2 = x² + 5x + 6
(1) u.(u + 2) - 1
= u² + 2u - 1
= u² + 2u + 1 - 2
= (u² + 2u + 1) - 2
= (u + 1)² - 2
= (u + 1 + √2)(u + 1 - √2)
= (x² + 5x + 4 + 1 + √2)(x² + 5x + 4 + 1 - √2)
= (x² + 5x + 5 + √2)(x² + 5x + 5 - √2)
i: \(-\left(x^2+2\right)^2+4x\left(x^2+2\right)-3x^2\)
\(=-\left[\left(x^2+2\right)^2-4x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)^2-x\left(x^2+2\right)-3x\left(x^2+2\right)+3x^2\right]\)
\(=-\left[\left(x^2+2\right)\left(x^2+2-x\right)-3x\left(x^2+2-x\right)\right]\)
\(=-\left(x^2+2-x\right)\left(x^2-3x+2\right)\)
\(=-\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x-1\right)\)
\(=-\left(x+2\right)\left(x-2\right)\left(x-1\right)^2\)
l: \(81x^4+4y^4\)
\(=81x^4+36x^2y^2+4y^4-36x^2y^2\)
\(=\left(81x^4+36x^2y^2+4y^4\right)-\left(6xy\right)^2\)
\(=\left[\left(9x^2\right)^2+2\cdot9x^2\cdot2y^2+\left(2y^2\right)^2\right]-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2\right)^2-\left(6xy\right)^2\)
\(=\left(9x^2+2y^2+6xy\right)\left(9x^2+2y^2-6xy\right)\)
b. (x + 8)2 – 2(x +8)(x -2) + (x -2)2
c. x2(x – 4)(x + 4) – (x2 + 1)(x2- 1) d. (x+1)(x2 – x + 1) – (x – 1)(x2 +x +1)
\(b,=\left(x+8-x+2\right)^2=100\\ c,=x^2\left(x^2-16\right)-x^4+1=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
b) \(=\left(x+8-x+2\right)^2=10^2=100\)
c) \(=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\)
d) \(=x^3+1-x^3+1=2\)
Thực hiện phép tính:
a,(2x- 4)(x+9)
b,(x2 + 4x +3)(x-2)
c,(x-8)(x+8)
d, x2(7x-5)-7(x3- 4x+6)
e,(x2+2)(x2+x+1)
f,(x2+2)(x4-2x2+4)
g,(x-g)(x+9)
h,(x-2)(2x3-x2+1)+(x2+1)+(x2-2x2)(1-2)x
Dễ
Thế
Mà
Cũnhoir
Dc
Ạ
Chịu
Chắc
Phải
Ngu
Lamqs
Mới
Hỏi
Câu
Này
a. x2(x – 2x3) b. (x2 + 1)(5 – x) c. (x – 2)(x2 + 3x – 4) d. (x – 2)(x – x2 + 4) e. (x2 – 1)(x2 + 2x) f. (2x – 1)(3x + 2)(3 – x) g. (x + 3)(x2 + 3x – 5) h. (xy – 2).(x3 – 2x – i. (5x3 – x2 + 2x – 3).(4x2 – x + 2
a: \(=x^3-2x^5\)
e: \(=x^4+2x^3-x^2-2x\)
Mọi người làm nhanh hộ e với ạ, T7 e nộp r
Bài 1.
Tính:
a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)
e. (x2–1)(x2+ 2x) f. (2x–1)(3x + 2)(3–x) g. (x + 3)(x2+ 3x–5)
h (xy–2).(x3–2x–6) i. (5x3–x2+ 2x–3).(4x2–x + 2)
Bài 2.
Tính:
a. (x–2y)2 b. (2x2+3)2 c. (x–2)(x2+ 2x + 4) d. (2x–1)2
Bài 3: Rút gọn biểu thức
a.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)
b. x(2x2–3)–x2(5x + 1) + x2.
c. 3x(x–2)–5x(1–x)–8(x2–3)
Bài 4: Tìm x, biết
a. (x–2)2–(x–3)(x + 3) = 6.
b. 4(x–3)2–(2x–1)(2x + 1) = 10
c. (x–4)2–(x–2)(x + 2) = 6.
d. 9 (x + 1)2–(3x–2)(3x + 2) = 10
Bài 5:Phân tích các đa thức sau thành nhân tử
a. 1–2y + y2
b. (x + 1)2–25
c. 1–4x2
d. 8–27x3
e. 27 + 27x + 9x2+ x3
f. 8x3–12x2y +6xy2–y3
g. x3+ 8y3
Bài 6:Phân tích các đa thức sau thành nhân tử
a. 3x2–6x + 9x2
b. 10x(x–y)–6y(y–x)
c. 3x2+ 5y–3xy–5x
d. 3y2–3z2+ 3x2+ 6xy
e. 16x3+ 54y3
f. x2–25–2xy + y2
g. x5–3x4+ 3x3–x2
.
Bài 7: Phân tích đa thức thành nhân tử
a. 5x2–10xy + 5y2–20z2
b. 16x–5x2–3
c. x2–5x + 5y–y2
d. 3x2–6xy + 3y2–12z2
e. x2+ 4x + 3
f. (x2+ 1)2–4x2
g. x2–4x–5
Bài 5:
a. 1 - 2y + y2
= (1 - y)2
b. (x + 1)2 - 25
= (x + 1)2 - 52
= (x + 1 - 5)(x + 1 + 5)
= (x - 4)(x + 6)
c. 1 - 4x2
= 12 - (2x)2
= (1 - 2x)(1 + 2x)
d. 8 - 27x3
= 23 - (3x)3
= (2 - 3x)(4 + 6x + 9x2)
e. (đề hơi khó hiểu ''x3'' !?)
g. x3 + 8y3
= (x + 2y)(x2 - 2xy + y2)
Tính:
+ 12x6y3 : 4x3y
+ (x+1)(x2 – x + 1)
+ 2x2y(x2+ 3xy)
Phân tích đa thức thành nhân tử:
+ 4x2y + 6 xy2 -8xy
+x2 – 9
+ x2 – 4 +xy – 2y
+x2 - 7x +10
Tìm x biết:
+x2-x( x-2) = 2
+( x-2)2 + x -2= 0
\(1,\\ 12x^6y^3:4x^3y=3x^3y^2\\ \left(x+1\right)\left(x^2-x+1\right)=x^3+1\\ 2x^2y\left(x^2+3xy\right)=3x^4y+6x^3y^2\\ 2,\\ a,=2xy\left(2x+3y-4\right)\\ b,=\left(x-3\right)\left(x+y\right)\\ c,=\left(x-2\right)\left(x+2\right)+y\left(x-2\right)=\left(x+y+2\right)\left(x-2\right)\\ d,=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\\ 3,\\ a,\Leftrightarrow x^2-x^2+2x=2\\ \Leftrightarrow2x=2\Leftrightarrow x=1\\ b,\Leftrightarrow\left(x-2\right)\left(x-2+1\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
bài 1 giải các bất phương trình sau
a, -x2 +5x-6 ≥ 0
b, x2-12x +36≤0
c, -2x2 +4x-2≤0
d, x2 -2|x-3| +3x ≥ 0
e, x-|x+3| -10 ≤0
bài 2 xét dấu các biểu thức sau
a,<-x2+x-1> <6x2 -5x+1>
b, x2-x-2/ -x2+3x+4
c, x2-5x +2
d, x-< x2-x+6 /-x2 +3x+4 >
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
cong phan thuc
a)x2+2/x2+4+5/x+2
b)x+y/2+x+2/2x2+4
c)8/(x2+3)(x2-1)+2/x2+3+1/X+1
c: \(=\dfrac{8}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x-1}\)
rút gọn A,B,C
A=(3x+7)(2x+3)-(3x-5)(2x+11)
B=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
C=x(x3+x2-3x-2)-(x2-2)(x2+x-1)
\(A=6x^2+23x+21-\left(6x^2+23x-55\right)=76\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ C=x^4+x^3-3x^2-2x-\left(x^4+x^3-x^2-2x^2-2x+2\right)\\ =-2\)