tìm m để pt 2sin(x)+mcos(x)=1-m có nghiệm x thuộc[-pi/2;pi/2]
Tìm m để phương trình f'(x0 = 0 có nghiệm. Biết f x = m c o s x + 2 s i n x − 3 x + 1.
A. m > 0
B. − 5 < m < 5
C. m ≥ 5
D. m < 0
Đáp án C
Ta có
f ' x = − m s i n x + 2 cos x − 3 ; y ' = 0 ⇔ − m s i n x + 2 cos x = 3
Phương trình này giải được với điều kiện là
m 2 + 2 2 ≥ 3 2 ⇔ m 2 ≥ 5 ⇔ m ∈ − ∞ ; − 5 ∪ 5 ; + ∞
1Tìm m để phương trình mcos²x - msin2x - msin²x=0 để phương trình có nghiệm.
2 Tìm x € (0; π/2) thỏa mãn pt cos5x.sin4x = cos3x.sin2x
1,
Nếu m = 0, phương trình có tập nghiệm là S = R, thỏa mãn yêu cầu bài toán
Nếu m ≠ 0 phương trình tương đương
cos2x - sin2x - sin2x = 0 ⇔ cos2x = sin2x, luôn có nghiệm trên R
Vậy m nào cũng sẽ thỏa mãn ycbt
1, Tìm GTLN M của hàm số y=a+b\(\sqrt{sinx}\) +c\(\sqrt{cosx}\); x\(\in\)(0;pi/4).a^2+b^2+c^2=4 2, giải pt sin3x-4sinx.cos2x=0
3,tập nghiệm của phương trình sin^2x cosx=0
4, giải pt \(\sqrt{3}\)sin2x+2sin^2x=3
5,pt 2sin^2x-5sinx.cosx-cos^2x=-2 tương đương với pt nào
6,nghiệm của pt sĩn+cosx-2sinx.cosx+1=0
7, tất cả các nghiệm của pt sin3x-cosx=0
8, số nghiệm của pt sin2x-cos2x=3sinx+cosx-2 trong khoảng(0;pi/2)
9, tìm m để pt 2sin^2x+msin2x=2m vô nghiệm
10, tổng các nghiệm của pt sin(x+pi/4)+sin(x-pi/4)=0 thuộc khoảng (0;4pi)
1.
Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?
2.
\(sin3x-4sinx.cos2x=0\)
\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)
\(\Leftrightarrow2sinx-sin3x=0\)
\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)
\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)
\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
3.
\(sin^2x.cosx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
4.
\(\sqrt{3}sin2x+1-cos2x=3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
5.
Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)
6.
\(sinx+cosx-2sinx.cosx+1=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t+1-t^2+1=0\)
\(\Leftrightarrow-t^2+t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
2sin2x-(5m+1)sinx+2m2+2m=0
tìm m để pt có đúng 5 nghiệm \(x\in\left(\frac{-\pi}{2};3\pi\right)\)
Đặt \(sinx=a\) (\(-1\le a\le1\) ) \(\Rightarrow2a^2-\left(5m+1\right)a+2m^2+2m=0\) (1)
Để pt đã cho có đúng 5 nghiệm thuộc \(\left(-\frac{\pi}{2};3\pi\right)\) ta có 2 trường hợp sau:
TH1: \(\left\{{}\begin{matrix}a_1=1\\-1< a_2\le0\end{matrix}\right.\)
\(\Rightarrow2-5m-1+2m^2+2m=0\Leftrightarrow2m^2-3m+1=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\Rightarrow a_2=\frac{2m^2+2m}{2}=2\left(l\right)\\m=\frac{1}{2}\Rightarrow a_2=\frac{3}{4}\left(l\right)\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}a_1=-1\\0< a_2< 1\end{matrix}\right.\)
\(\Rightarrow2+5m+1+2m^2+2m=0\Rightarrow2m^2+7m+3=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-3\Rightarrow a_2=-6\left(l\right)\\m=-\frac{1}{2}\Rightarrow a_2=\frac{1}{4}\end{matrix}\right.\)
Vậy \(m=-\frac{1}{2}\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
\(\Leftrightarrow\left(1-sinx\right)\left(cos2x+3msinx+sinx-1\right)=m\left(1-sinx\right)\left(1+cosx\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}\\cos2x+3m.sinx+sinx-1=m\left(1+sinx\right)\left(1\right)\end{matrix}\right.\)
Bài toán thỏa mãn khi (1) có 5 nghiệm khác nhau trên khoảng đã cho thỏa mãn \(sinx\ne1\)
Xét (1):
\(\Leftrightarrow1-2sin^2x+3msinx+sinx-1=m+m.sinx\)
\(\Leftrightarrow2sin^2x-sinx-2m.sinx+m=0\)
\(\Leftrightarrow sinx\left(2sinx-1\right)-m\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{6};\dfrac{5\pi}{6}\\sinx=m\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(2\right)\) có 3 nghiệm khác nhau trên \(\left(-\dfrac{\pi}{2};2\pi\right)\)
\(\Leftrightarrow-1< m< 0\)
1.Giải các pt sau
a) tan2x + cotx = 8cos2x
b) cotx - tanx + 4sin2x = 2 / sin2x ( dấu chia nha )
c) 5 sinx - 2 = 3(1 - sinx)tan2x
2.Tìm tham số m để pt có nghiệm
a) (m + 1)sin2x - sin2x + cos2x = 0
b) 2sin2x + msin2x = 2m
c) Nghiệm thuộc khoảng [0:π/4] sin2x - 4sinxcox + (m-2)cos2x = 0
ĐKXĐ: ...
a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)
\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)
\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)
\(\Leftrightarrow cosx=2sin4x.cosx\)
\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)
\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)
\(\Leftrightarrow cos2x+2sin^22x=1\)
\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)
\(\Leftrightarrow-2cos^22x+cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)
1c/
\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)
\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)
\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)
\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)
\(\Leftrightarrow2sin^2x+3sinx-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 2:
a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)
\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)
\(\Leftrightarrow4m\le4\Rightarrow m\le1\)
Bài 2:
b/ \(\Leftrightarrow1-cos2x+msin2x=2m\)
\(\Leftrightarrow msin2x-cos2x=2m-1\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(m^2+1\ge\left(2m-1\right)^2\)
\(\Leftrightarrow3m^2-4m\le0\)
\(\Rightarrow0\le m\le\frac{4}{3}\)
c/ Với \(cosx=0\) không phải là nghiệm
Với \(cosx\ne0\), chia 2 vế cho \(cos^2x\) ta được:
\(tan^2x-4tanx+m-2=0\)
Đặt \(tanx=t\Rightarrow t\in\left[0;1\right]\)
Phương trình trở thành: \(t^2-4t+m-2=0\)
\(\Leftrightarrow f\left(t\right)=t^2-4t-2=-m\)
Dựa vào đồ thị hàm \(f\left(t\right)=t^2-4t-2\), để \(y=-m\) cắt \(y=f\left(t\right)\) với \(t\in\left[0;1\right]\) \(\Rightarrow-5\le-m\le-2\)
\(\Rightarrow2\le m\le5\)
Cho pt: x^2 -2(m-1)x +m^2 -4m +3 a) Tìm m để pt có 1 nghiệm là 5,tìm nghiệm còn lại b) Tìm hệ thức liên hệ giữa các nghiệm k phụ thuộc vào m c) Tìm để pt có 2 nghiệm x1 x2 thỏa mãn x1 -2x2 =1
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6
Cos2x+2(m-1)cosx-2m+1=0. Tìm m để pt có 2 nghiệm thuộc khoảng (-pi/3,pi/6]
cho PT x2−2(m−1)x−m=0x2−2(m−1)x−m=0
a) tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc vào m
b) tìm m để Pt có đúng 1 nghiệm âm
c) tìm m để PT có 2 nghiệm = nhau về giá trị tuyệt đối và trái dấu nhau
d) tìm m để |x1−x2|nhỏnhất