Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

Hồ Minh Trường
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 15:26

\(A=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+4\\ A=\left(x-y\right)^2+\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 8:15

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

Kwalla
Xem chi tiết
HT.Phong (9A5)
19 tháng 8 2023 lúc 13:17

Tìm giá trị nhỏ nhất của biểu thức:

a) Ta có: 

\(M=2x^2+4x+7\)

\(M=2\cdot\left(x^2+2x+\dfrac{7}{2}\right)\)

\(M=2\cdot\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(M=2\cdot\left[\left(x+1\right)^2+2,5\right]\)

\(M=2\left(x+1\right)^2+5\)

Mà: \(2\left(x+1\right)^2\ge0\forall x\) nên:

\(M=2\left(x+1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra:

\(2\left(x+1\right)^2+5=5\Leftrightarrow2\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy: \(M_{min}=5\) khi \(x=-1\)

b) Ta có:

\(N=x^2-x+1\)

\(N=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\) nên \(N=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=" xảy ra: 

\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(N_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

HT.Phong (9A5)
19 tháng 8 2023 lúc 13:29

Tìm giá trị lớn nhất của biểu thức

a) Ta có: 

\(E=-4x^2+x-1\)

\(E=-\left(4x^2-x+1\right)\)

\(E=-\left[\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{15}{16}\right]\)

\(E=-\left[\left(2x-\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\)

Mà: \(\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\ge\dfrac{15}{16}\forall x\) nên 

\(\Rightarrow E=-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]\le-\dfrac{15}{16}\forall x\)

Dấu "=" xảy ra:

\(-\left[\left(2x+\dfrac{1}{4}\right)^2+\dfrac{15}{16}\right]=-\dfrac{15}{16}\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2-\dfrac{15}{16}=-\dfrac{15}{16}\)

\(\Leftrightarrow-\left(2x+\dfrac{1}{4}\right)^2=0\Leftrightarrow2x-\dfrac{1}{4}=0\Leftrightarrow x=\dfrac{1}{16}\)

Vậy: \(E_{max}=-\dfrac{15}{16}\) khi \(x=\dfrac{1}{16}\)

b) Ta có:

\(F=5x-3x^2+6\)

\(F=-3x^2+5x-6\)

\(F=-\left(3x^2-5x-6\right)\)

\(F=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(F=-3\left[\left(x-\dfrac{5}{6}\right)^2-\dfrac{97}{36}\right]\)

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\)

Mà: \(-3\left(x-\dfrac{5}{6}\right)^2\le0\forall x\) nên:

\(F=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}\le\dfrac{97}{36}\forall x\)

Dấu "=" xảy ra:

\(-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{36}=\dfrac{97}{36}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{5}{6}=0\Leftrightarrow x=\dfrac{5}{6}\)

Vậy: \(F_{max}=\dfrac{97}{36}\) khi \(x=\dfrac{5}{6}\)

Turquoise ♫
19 tháng 8 2023 lúc 13:21

\(M=2x^2+4x+7\)

\(=2\left(x^2+2x+\dfrac{7}{2}\right)\)

\(=2\left(x^2+2x+1+\dfrac{5}{2}\right)\)

\(=2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]\)

\(=2\left(x+1\right)^2+5\)

Vì \(2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x+1\right)^2+5\ge5\forall x\)

\(\Rightarrow M_{min}=5\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Tương tự: \(N=x^2-x+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

\(\Rightarrow N_{min}=\dfrac{3}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

\(E=-4x^2+x-1\)

\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)

\(=-4\left[x^2-2.x.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2-\left(\dfrac{1}{8}\right)^2+\dfrac{1}{4}\right]\)

\(=-4\left[\left(x-\dfrac{1}{8}\right)^2+\dfrac{15}{64}\right]\)

\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\)

Vì \(-4\left(x-\dfrac{1}{8}\right)^2\le0\forall x\)

\(\Rightarrow-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{15}{16}\le-\dfrac{15}{16}\forall x\)

\(\Rightarrow E_{max}=-\dfrac{15}{16}\Leftrightarrow-4\left(x-\dfrac{1}{8}\right)^2=0\Leftrightarrow x=\dfrac{1}{8}\)

Tương tự: \(F=5x-3x^2+6\)

\(=-3x^2+5x+6\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)

\(\Rightarrow F_{max}=\dfrac{97}{12}\Leftrightarrow-3\left(x-\dfrac{5}{6}\right)^2=0\Leftrightarrow x=\dfrac{5}{6}\)

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

THẮNG SANG CHẢNH
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:29

Lời giải:

a) 

$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$

Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$

$\Leftrightarrow x=-\frac{1}{2}$

b) 

$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$

$=(x-1)^2+(y-2)^2+2\geq 2$

Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$

$\Leftrightarrow x=1; y=2$

ngtt
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
18 tháng 9 2023 lúc 22:36

`# \text {04th5}`

`a.`

`P = (5x^2 - 2xy + y^2) - (x^2 + y^2) - (4x^2 - 5xy + 1)`

`= 5x^2 - 2xy + y^2 - x^2 - y^2 - 4x^2 + 5xy - 1`

`= (5x^2 - x^2 - 4x^2) + (-2xy + 5xy) + (y^2 - y^2) - 1`

`= 3xy - 1`

`b.`

\((x^2-5x+4)(2x+3)-(2x^2-x-10)(x-3)\)

`= x^2(2x + 3) - 5x(2x + 3) + 4(2x + 3) - [ 2x^2(x - 3) - x(x - 3) - 10(x - 3)]`

`= 2x^3 + 3x^2 - 10x^2 - 15x + 8x + 12 - (2x^3 - 6x^2 - x^2 + 3x - 19x + 30)`

`= 2x^3 -7x^2 - 7x + 12 - (2x^3 - 7x^2 - 7x + 30)`

`= 2x^3 - 7x^2 - 7x + 12 - 2x^3 + 7x^2 + 7x -30`

`= -30`

Vậy, giá trị của biểu thức không phụ thuộc vào giá trị của biến.

Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2