có bao nhiêu số tự nhiên chẵn gồm 3 chữ số khác nhau đc lập từ các chữ số 0;1; 2; 3; 4 và nhỏ hơn 400
Từ các chữ số {0, 3, 4, 5, 6, 7} có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số khác nhau ?
Số cần tìm có dạng \(\overline{abcd}\left(a,b,c,d\in\left\{0;3;4;5;6;7\right\}\right)\)
TH1: \(d=0\)
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(3.4.5=60\) cách lập.
TH2: \(d\ne0\)
d có 2 cách chọn
a có 4 cách chọn
b có 4 cách chọn
c có 3 cách chọn
\(\Rightarrow\) Có \(2.3.4.4=96\) cách lập.
Vậy có \(96+60=156\) cách lập.
a)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chẵn 3 lẻ
b)Có bao nhiêu số tự nhiên gồm 6 chữ số khác nhau trong đó các chữ số chẵn không đứng cạnh nhau
c)Có bao nhiêu số tự nhiên có 8 chữ số khác nhau sao cho có 2 chữ số 1, 3 chữ số 0, các chữ số có quá 1 lần
a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 3 chữ số chẵn có C35 cách
Sắp xếp 6 chữ số này có 6! cách
Vậy có C35 . C35 . 6! số
TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0
Chọn 3 chữ số lẻ có C35 cách
Chọn 2 chữ số chẵn có C24 cách
Sắp xếp 5 chữ số có 5! cách
Vậy có C35 . C24 . 5! số
Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ
Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số khác nhau. Có bao nhiêu số chẵn, bao nhiêu số lẻ?
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
có 720 số tự nhiên có 6 chữ số được lập từ các số trên
Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là a b c d e f
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3 . 5 . 4 . 3 . 2 . 1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
Từ các chữ số 0, 1, 2, 3 có thể lập được bao nhiêu số thỏa mãn:
a) Là số tự nhiên có ba chữ số khác nhau?
b) Là số tự nhiên chẵn có ba chữ số khác nhau?
a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.
Từ các chữ số 1,2,3,4,5,6,7 ta có thể lập đc bao nhiêu số tự nhiên gồm 3 chữ số khác nhau ?
Hỏi có bao nhiêu cách chọn
Hàng trăm có 7 cách chọn
Hàng chục có 6 cách chọn
Hàng đơn vị có 5 cách chọn
Vậy chọn đc \(5\cdot6\cdot7=210\) số thỏa yêu cầu đề
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau ?
A. 12
B. 6
C. 4
D. 24
Đáp án A
Gọi số cần tìm có dạng
Chọn a : có 2 cách
Chọn b, c : có cách
Vậy có số.
Từ các chữ số 1,2,3,4,5,6,7,8,9 hỏi lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và trong đó có đúng 3 chữ số chẵn và 3 chữ số lẻ
Từ các số 1,2,3,4,5,6,7,8 có thể lập bao nhiêu số tự nhiên chẵn, gồm 5 chữ số khác nhau từng đôi một .
Có 4 cách chọn chữ số hàng đơn vị
Có\(A^4_7\) cách chọn và sắp xếp 4 chữ số còn lại
=> Có \(4A^4_7=3360\) số được tạo thành.
Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên: a) Có 3 chữ số khác nhau b) Có 3 chữ số chẵn khác nhau c) Có 3 chữ số lẻ khác nhau
a: \(\overline{abc}\)
a có 5 cách
b có 5 cách
c có 4 cách
=>Có 5*5*4=100 cách
b: \(\overline{abc}\)
a có 2 cách
b có 2 cách
c có 1 cách
=>Có 2*2*1=4 cách
c: \(\overline{abc}\)
a có 3 cách
b có 2 cách
c có 1 cách
=>Có 3*2*1=6 cách
Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau?
A. 160.
B. 156.
C. 752.
D. 240.