Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Nụ
Xem chi tiết
Ái Nữ
24 tháng 12 2017 lúc 21:39

a, Bạn nghi sai đề: bài này mình làm rồi nên biết chỗ sai, nếu bạn nghi đúng đề thì mình làm sau nhé

\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\)

=\(\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\)

=\(\dfrac{6x-12y+8z-6x+12y-8z}{9+4+6}=\dfrac{0}{29}\)

Như vậy ta có thể suy ra

\(\Rightarrow\left\{{}\begin{matrix}2x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}\\4z=3x\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\)=\(\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\)

\(\dfrac{y}{2}=3\Rightarrow y=6\)

\(\dfrac{z}{3}=3\Rightarrow z=9\)

~~~~~~~~~~~~~~~~~~~~~~~~

Ái Nữ
24 tháng 12 2017 lúc 21:47

b,

5x=8y=3z và x-2y+z= 34

Áp dụng tính chất của dãy tỉ số bằng nhau:

Ta có: 5x= 8y= 3z= \(\dfrac{5x}{120}=\dfrac{8y}{120}=\dfrac{3z}{120}=\dfrac{x}{24}=\dfrac{y}{15}=\dfrac{z}{40}\)

\(\Rightarrow\dfrac{x}{24}=\dfrac{y}{15}=\dfrac{z}{40}=\dfrac{x-2y+z}{24-30+40}=\dfrac{34}{34}=1\)

\(\dfrac{x}{24}=1\Rightarrow x=24\)

\(\dfrac{y}{15}=1\Rightarrow y=15\)

\(\dfrac{z}{40}=1\Rightarrow z=40\)

Còn 1 cách nữa nhưng thôi nha bạn

kill one
24 tháng 12 2017 lúc 21:18

Đáp án câu b: x=24, y=15, z=40. Để xem lời giải, truy cập https://giaibaitapvenha.blogspot.com/

ANH HOÀNG
Xem chi tiết
Minh Hiếu
5 tháng 10 2021 lúc 19:15

a) \(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 22:21

c: Ta có: 5x=8y=20z

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)

Do đó: x=24; y=15; z=6

Nguyễn Châu Mỹ Linh
Xem chi tiết
Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:37

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:42

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)

Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:49

3,Từ \(5x=8y=20z\Rightarrow\dfrac{5x}{160}=\dfrac{8y}{160}=\dfrac{20z}{160}\)

\(\Rightarrow\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}\)

Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}=\dfrac{x-y-z}{32-20-8}=\dfrac{3}{4}\)

+\(\dfrac{x}{32}=\dfrac{3}{4}\Rightarrow x=\dfrac{32.3}{4}=24\)

+\(\dfrac{y}{20}=\dfrac{3}{4}\Rightarrow y=\dfrac{20.3}{4}=15\)

+\(\dfrac{z}{8}=\dfrac{3}{4}\Rightarrow z=\dfrac{3.8}{4}=6\)

Vậy \(x=24;y=15;z=6\)

Quốc Huy
Xem chi tiết
 Mashiro Shiina
14 tháng 12 2017 lúc 23:22

\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\Leftrightarrow\dfrac{x-30}{40}=\dfrac{y-15}{20}=\dfrac{z-21}{28}\)

\(\Rightarrow\dfrac{x-30}{10}=\dfrac{y-15}{5}=\dfrac{z-21}{7}\)

\(\Rightarrow\dfrac{x}{10}-\dfrac{30}{10}=\dfrac{y}{5}-\dfrac{15}{5}=\dfrac{z}{7}-\dfrac{21}{7}\)

\(\Rightarrow\dfrac{x}{10}-3=\dfrac{y}{5}-3=\dfrac{z}{7}-3\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{7}\)

Đặt: \(\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{7}=t\Rightarrow\left\{{}\begin{matrix}x=10t\\y=5t\\z=7t\end{matrix}\right.\)

\(xyz=22400\Leftrightarrow350t^3=22400\Leftrightarrow t^3=64\Rightarrow t=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)

Nguyễn Ngô Minh Trí
14 tháng 12 2017 lúc 22:12

Ta có 40x−30 = 20y−15 = 28z−21 => 40x - 4030= 20y - 2015= 28z- 2821

<=> 40x - 43= 20y - 43 = 28z- 43
<=> 40x = 20y = 28z
Đặt 40x = 20y = 28z= k
Suy ra x = 40k, y = 20k, z = 28k
Khi đó xyz = 40k.20k.28k = 22400k3k3
Theo đề xyz = 22400 suy ra k3k3 = 1 <=> k = ±±1
Với k = 1, ta có x = 40, y = 20, z = 28
Với k = -1, ta có x = -40, y = -20, z = -28

Nguyễn Vũ Phương Thảo
Xem chi tiết
Vân Nguyễn Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 20:59

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)

Do đó: x=6; y=9; z=15

Trịnh Thị Thảo Nhi
Xem chi tiết
Hoàng Thị Ngọc Anh
5 tháng 8 2017 lúc 10:25

a) Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\)

\(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)

\(\Rightarrow\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tc dãy tỉ số bằng nhau:

\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=2\)

Do \(\left\{{}\begin{matrix}\dfrac{2x}{14}=2\\\dfrac{5y}{100}=2\\\dfrac{2z}{64}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\).

b) \(5x=8y=20z\Rightarrow\dfrac{5x}{40}=\dfrac{8y}{40}=\dfrac{20z}{40}\)

\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}\)

Áp dụng...

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

....

c) \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\Rightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)

...

Nguyen Ngoc Anh Linh
Xem chi tiết
Đinh Nho Hoàng
26 tháng 10 2017 lúc 12:48

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

NguyễnĐứcanh
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2021 lúc 17:01

a.

Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)

Thế vào \(2x+y-z=81\)

\(\Rightarrow2.5k+3k-4k=81\)

\(\Rightarrow9k=81\)

\(\Rightarrow k=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)

b.

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)

Thế vào \(5x-y+3z=124\)

\(\Rightarrow5.3k-5k+3.2k=124\)

\(\Rightarrow16k=124\)

\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 8 2021 lúc 17:03

c.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Thế vào \(xyz=810\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)

Nguyễn Việt Lâm
4 tháng 8 2021 lúc 17:06

d.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=6k\end{matrix}\right.\)

Thế vào \(x^2y^2z^2=288^2\)

\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2.\left(6k\right)^2=288^2\)

\(\Rightarrow\left(k^2\right)^3=64\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=6k=12\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=6k=-12\end{matrix}\right.\)