giải pt: \(\left\{{}\begin{matrix}2cos2x-4cosx=1\\sinx\ge0\end{matrix}\right.\)
help pls
tìm x biết \(\left\{{}\begin{matrix}2sin2x-4cosx=1\\sinx\ge0\end{matrix}\right.\)
Nhìn cái đề lúc đầu không biết phải xử lý thế nào luôn
\(2\left(2cos^2x-1\right)-4cosx=1\)
\(\Leftrightarrow4cos^2x-4cosx-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{3}{2}>1\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow cosx=cos\left(\frac{2\pi}{3}\right)\)
\(\Rightarrow x=\frac{2\pi}{3}+k2\pi\) (do \(sinx\ge0\) nên ko nhận nghiệm \(-\frac{2\pi}{3}+k2\pi\))
Giải hệ bất pt sau :
\(\left\{{}\begin{matrix}4-3x-x^2\ge0\\x^2+x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le1\\\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-4\le x< -2\)
Phương trình : \(sin3x+cos2x=1+2sinxcos2x\) tương đương với phương trình :
A . \(\left[{}\begin{matrix}sinx=0\\sinx=\frac{1}{2}\end{matrix}\right.\)
B . \(\left[{}\begin{matrix}sinx=0\\sinx=1\end{matrix}\right.\)
C . \(\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
D . \(\left[{}\begin{matrix}sinx=0\\sinx=-\frac{1}{2}\end{matrix}\right.\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\3-y+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}x-2x-1=3\\y=2x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\left(-2\right)+1=-3\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}2x+3x-6=4\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\\ 4,\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y+2=3y+8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\\ 5,\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\\dfrac{3+3y}{2}-4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1+y}{2}\\3+3y-8y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{y+1}{2}\\y=-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)
Phương trình : \(4cosx-2cos2x-cos4x=1\) có các nghiệm là :
A . \(\left[{}\begin{matrix}x=\frac{\Pi}{2}+k\Pi\\x=k2\Pi\end{matrix}\right.\)
B . \(\left[{}\begin{matrix}x=\frac{\Pi}{4}+k\frac{\Pi}{2}\\x=k\Pi\end{matrix}\right.\)
C . \(\left[{}\begin{matrix}x=\frac{\Pi}{3}+k\frac{2\Pi}{3}\\x=k\frac{\Pi}{2}\end{matrix}\right.\)
D . \(\left[{}\begin{matrix}x=\frac{\Pi}{6}+k\frac{\Pi}{3}\\x=k\frac{\Pi}{4}\end{matrix}\right.\)
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
Giải hệ sau : \(\left\{{}\begin{matrix}x-\dfrac{1}{x}\ge0\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x^2-1}{x}\ge0\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x}\ge0\)
Trường hợp 1:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\ge0\\x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\\x>0\end{matrix}\right.\Leftrightarrow x\ge1\)
Trường hợp 2:
\(\left\{{}\begin{matrix}\left(x-1\right)\left(x+1\right)\le0\\x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\x< 0\end{matrix}\right.\Leftrightarrow-1\le x< 0\)
Vậy hệ có nghiệm \(S=[1;+\infty)\cup [-1;0)\)
đk để giải pt \(\sqrt{A}=B\)
cho em sin đk chứ ở trường em 1 người thì tìm ra 2đk \(\left\{{}\begin{matrix}A\ge0\\B\ge\\A=B^2\end{matrix}\right.0\)
1 ng thì\(\left\{{}\begin{matrix}B\ge0\\A=B^2\end{matrix}\right.\)
1 trong 2 cái nào đúng
\(\sqrt{A}=B\Leftrightarrow\left\{{}\begin{matrix}B\ge0\\A=B^2\end{matrix}\right.\)
Cái đầu là thừa
mà bà cô dạy đội tuyển huyện toán ở quê em là phải thêm \(A\ge0\)
nửa bà mới chấm bài á
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x^2+y^2+x+y=18\\x\left(x+1\right).y\left(y+1\right)=72\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\3y-1=xy\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}-3\sqrt{\frac{y}{x}}=2\\x-y+xy=1\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
HELP ME :((
a/ \(\left\{{}\begin{matrix}\left(x^2+x\right)+\left(y^2+y\right)=18\\\left(x^2+x\right)\left(y^2+y\right)=72\end{matrix}\right.\)
Theo Viet đảo, \(x^2+x\) và \(y^2+y\) là nghiệm của:
\(t^2-18t+72=0\Rightarrow\left[{}\begin{matrix}t=12\\t=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2+x=6\\y^2+y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x^2+x=12\\y^2+y=6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=\left\{2;-3\right\}\\y=\left\{3;-4\right\}\end{matrix}\right.\\\left\{{}\begin{matrix}x=\left\{3;-4\right\}\\y=\left\{2;-3\right\}\end{matrix}\right.\end{matrix}\right.\)
b/ ĐKXĐ: ...
\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\x=\frac{3y-1}{y}\end{matrix}\right.\)
Nhận thấy \(y=\frac{1}{3}\) không phải nghiệm
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\\frac{1}{x}=\frac{y}{3y-1}\end{matrix}\right.\) \(\Rightarrow\frac{y}{3y-1}+\frac{1}{y+1}=1\)
\(\Leftrightarrow y\left(y+1\right)+3y-1=\left(3y-1\right)\left(y+1\right)\)
\(\Leftrightarrow y^2-y=0\Rightarrow\left[{}\begin{matrix}y=0\left(l\right)\\y=1\end{matrix}\right.\) \(\Rightarrow x=2\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y-1=5\\y+1=xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\y+1=xy\end{matrix}\right.\)
\(\Rightarrow y+1=\left(3-y\right)y\)
\(\Leftrightarrow y^2-2y+1=0\Rightarrow y=1\Rightarrow x=2\)
giải hệ pt:
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)
giúp mk vs ạ mai mk học rồi
9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)
10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)
11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)
14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)
15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)