\(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
a)\(\sqrt{\left(2\sqrt{2}-3\right)^2+\sqrt{15}}\)
b)\(\sqrt{\left(\sqrt{10}-3\right)}^2+\sqrt{\left(\sqrt{10}-4\right)^2}\)
c)\(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
d)\(\sqrt{11}+6\sqrt{2}+\sqrt{11-6\sqrt{2}=6}\)
b: =căn 10-3+4-căn 10=1
a: \(=\sqrt{11-4\sqrt{6}+\sqrt{15}}\)
1. Tính
a) \(\sqrt[3]{(\sqrt{2}+3)(11+6\sqrt{2})}\sqrt[3]{(\sqrt{2}+-3)(11-6\sqrt{2})}\)
b) (\((\sqrt[3]{9}+\sqrt[3]{6}+\sqrt[3]{4})(\sqrt[3]{3}-\sqrt[3]{2})\)
c)\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
chứng minh :a) 11+6\(\sqrt{2}\)= (3+\(\sqrt{2}\))\(^2\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)=6
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)= -2
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)=-4
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(=\sqrt{2}-1-3-\sqrt{2}\)
=-4
b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)
\(=3\sqrt{3}+1\)
c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)
\(=3\sqrt{5}-6\)
d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)
\(=\sqrt{7}-2+4-\sqrt{7}+8\)
=10
a) 11+6\(\sqrt{2}\) = \(\left(3+\sqrt{2}\right)^2\)
b) 8-2\(\sqrt{7}\)=\(\left(\sqrt{7}-1\right)^2\)
c)\(\sqrt{11+6\sqrt{2}}=\sqrt{11-6\sqrt{2}}=6\)
d) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=-2\)
tính:
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}\)
c) \(\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12-6\sqrt{3}}.\sqrt{\dfrac{1}{3-\sqrt{3}}}\)
e) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
f) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
g) \(\left(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)\)
a) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\) = \(\sqrt{\dfrac{1}{8}\cdot2}.\sqrt{125\cdot\dfrac{1}{5}}=\sqrt{\dfrac{1}{4}}.\sqrt{25}=\dfrac{1}{2}\cdot5=2,5\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\sqrt{2-1}=1\)
c) \(\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}=\sqrt{\left(11-6\sqrt{2}\right)\left(11+6\sqrt{2}\right)}=\sqrt{121-72}=\sqrt{49}=7\)
Rút gọn biểu thức
1) \(\sqrt{6\sqrt{2}+11}\) - \(\sqrt{11-6\sqrt{2}}\)
2) (\(\sqrt{3}\) - 2)\(\sqrt{7+4\sqrt{3}}\)
1: =3+căn 2-3+căn 2
=2căn 2
2: =(căn 3-2)(căn 3+2)
=3-4=-1
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
cần gấp
Cần gấp thì bạn cũng nên viết đầy đủ đề bài nhé.
** Bài toán rút gọn**
Lời giải:
\(\sqrt{17-12\sqrt{2}}=\sqrt{17-2\sqrt{72}}=\sqrt{9-2\sqrt{8.9}+8}=\sqrt{(\sqrt{9}-\sqrt{8})^2}\)
\(=\sqrt{9}-\sqrt{8}=3-2\sqrt{2}\)
\(\sqrt{24-8\sqrt{8}}=\sqrt{24-2\sqrt{128}}=\sqrt{16-2\sqrt{16.8}+8}=\sqrt{(\sqrt{16}-\sqrt{8})^2}\)
\(=\sqrt{16}-\sqrt{8}=4-2\sqrt{2}\)
\(\Rightarrow \sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=(3-2\sqrt{2})-(4-2\sqrt{2})=-1\)
--------------------
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{17-12\sqrt{2}}+\sqrt{17+12\sqrt{2}}\)
\(=\sqrt{8-2\sqrt{8.9}+9}+\sqrt{8+2\sqrt{8.9}+9}\)
\(=\sqrt{(\sqrt{8}-\sqrt{9})^2}+\sqrt{(\sqrt{8}+\sqrt{9})^2}\)
\(=|\sqrt{8}-\sqrt{9}|+|\sqrt{8}+\sqrt{9}|=3-2\sqrt{2}+3+2\sqrt{2}=6\)
----------------------
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2\sqrt{9.2}+2}-\sqrt{9-2\sqrt{9.2}+2}\)
\(=\sqrt{(\sqrt{9}+\sqrt{2})^2}-\sqrt{(\sqrt{9}-\sqrt{2})^2}\)
\(=|\sqrt{9}+\sqrt{2}|-|\sqrt{9}-\sqrt{2}|=3+\sqrt{2}-(3-\sqrt{2})=2\sqrt{2}\)
\(\sqrt{17-12\sqrt{2}}-\sqrt{24-8\sqrt{8}}=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(4-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|-\left|4-2\sqrt{2}\right|=3-2\sqrt{2}-4+2\sqrt{2}\)
\(=-1\)
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|+\left|3+2\sqrt{2}\right|=3-2\sqrt{2}+3+2\sqrt{2}\)
\(=6\)
\(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|3+\sqrt{2}\right|-\left|3-\sqrt{2}\right|=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
c) Ta có: \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
a) \(\sqrt{5+2\sqrt{6}}-\sqrt{3-2\sqrt{2}}\)
b) \(\sqrt{11+6\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
c) \(\sqrt{2}\sqrt{2-\sqrt{3}}\left(\sqrt{3}+1\right)\)
a)
\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{2}+1=\sqrt{3}+1\)
b)
\(\sqrt{\left(\sqrt{9}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{16}+\sqrt{2}\right)^2}=\sqrt{9}+\sqrt{2}-\sqrt{16}-\sqrt{2}=3-4=-1\)
c)
\(=\sqrt{2\left(2-\sqrt{3}\right)}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
Giải phương trình:
e) \(\sqrt{x^2}=\left|-8\right|\)
Tính:
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
e) \(\sqrt{x^2}=\left|-8\right|\Rightarrow\left|x\right|=8\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{2}=\sqrt{\dfrac{8-2\sqrt{7}}{2}}-\sqrt{\dfrac{8+2\sqrt{7}}{2}}+\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}\right)^2-2.\sqrt{7}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}\right)^2+2.\sqrt{7}.1+1^2}{2}}+\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}+1\right)^2}{2}}+\sqrt{2}\)
\(=\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}+1\right|}{\sqrt{2}}+\sqrt{2}=\dfrac{\sqrt{7}-1}{\sqrt{2}}-\dfrac{\sqrt{7}+1}{\sqrt{2}}+\sqrt{2}\)
\(=-\dfrac{2}{\sqrt{2}}+\sqrt{2}=-\sqrt{2}+\sqrt{2}=0\)
f) \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{12+2\sqrt{11}}{2}}-\sqrt{\dfrac{12-2\sqrt{11}}{2}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{11}\right)^2+2.\sqrt{11}.1+1^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}\right)^2-2.\sqrt{11}.1+1^2}{2}}+3\sqrt{2}\)
\(=\sqrt{\dfrac{\left(\sqrt{11}+1\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{11}-1\right)^2}{2}}+3\sqrt{2}\)
\(=\dfrac{\left|\sqrt{11}+1\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{11}-1\right|}{\sqrt{2}}+3\sqrt{2}=\dfrac{\sqrt{11}+1}{\sqrt{2}}-\dfrac{\sqrt{11}-1}{\sqrt{2}}+3\sqrt{2}\)
\(=\dfrac{2}{\sqrt{2}}+3\sqrt{2}=\sqrt{2}+3\sqrt{2}=4\sqrt{2}\)